Researchers develop generalized families of distributions to better model data in fields like risk management, economics, and insurance. In this paper, a new distribution, the Extended Exponential Log-Logistic Distribution, is introduced, which belongs to the class of heavy-tailed distributions. Some statistical properties of the model, including moments, moment-generating function, entropy, and economic inequality curves, are derived. Six estimation methods are proposed for estimating the model parameters, and the performance of these methods is evaluated using randomly generated datasets. Additionally, several insurance-related measures, including Value at Risk, Tail Value at Risk, Tail Variance, and Tail Variance Premium, are calculated. Finally, two real insurance datasets are employed, showing that the proposed model fits the data better than many existing related models.
Type of Study: Applied |
Subject: Applied Statistics Received: 2025/05/29 | Accepted: 2025/04/30 | Published: 2025/11/26
References
1. شفاعی نوقابی م.، خراشاديزاده م. (1404) ويژگی هايی از تعمیم جديد توزيع لگ لوژستیک بهمراه كاربرد آن، مجله علوم آماری، 19(1) ، 117-136.
2. Afify, A. Z. Gemeay, A M. and Ibrahim, N. A. (2020). The Heavy-Tailed Exponential Distribution: Risk Measures,Estimation, and Application to Actuarial Data, Mathematics, 8, 1276. [DOI:10.3390/math8081276]
3. M. Teamah, A. M. Elbanna, A. E. and Gemeay, A. M. (2021). Heavy-Tailed Log-Logistic Distribution: Properties, Risk Measures and Applications, Statistics, Optimization and Information Computing, 9, 910-941. [DOI:10.19139/soic-2310-5070-1220]
4. Al-Babtain, A. A. Elbatal, I. Al-Mofleh, H. Gemeay, A. M. Afify, A. Z. and Sarg, A. M. (2021), The Flexible Burr xg Family: Properties, Inference, and Applications in Engineering Science. Symmetry, 13(3), 474. [DOI:10.3390/sym13030474]
5. Abd El-Bar, A. M. T.,Lima, M. d. C. S., and Ahsanullah, M. (2020), Some Inferences Based on a Mixture of Power Function and Continuous Logarithmic Distribution, Journal of Taibah University for Science, 14 (1),1116-1126. [DOI:10.1080/16583655.2020.1804140]
6. Algarni, A. (2022), Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model, Axioms, 11(9), 438. [DOI:10.3390/axioms11090438]
7. Al-Mofleh, H. Afify, A. Z. and Ibrahim. N. A. (2020) A New Extended Two-Parameter Distribution: Properties, Estimation Methods, and Applications in Medicine and Geology. Mathematics, 8(9), 1578. [DOI:10.3390/math8091578]
8. Alsadat, N., Hassan, A.S., Elgarhy, M., Johannssen, A. and Gemeay, A.M. (2024), Estimation Methods Based on Ranked Set Sampling for Power Logarithmic Distribution, Scientific Reports, 14, 17652. [DOI:10.1038/s41598-024-67693-4] [PMID] []
9. El-Saeed, A.R., Hassan, A.S., Elharoun, N.M., Al Mutairi, A., Khasha, R.H. and Nassr, S.G. (2023), A class of Power Inverted Topp-Leone Distribution: Properties, Different Estimation Methods and Applications, Journal of Radiation Research and Applied Sciences, 16, 100643. [DOI:10.1016/j.jrras.2023.100643]
10. Bernardi, M., Maruotti, A. and Petrella, L. (2012), Skew Mixture Models for Loss Distributions, A Bayesian Approach, Insur, Math. Econ., 51(3), 617-623. [DOI:10.1016/j.insmatheco.2012.08.002]
11. Cooray, K. and Ananda, M. M. A. (2005), Modeling Actuarial Data With a Composite Lognormal-Pareto Model, Scand Actuar J, 5, 321-334. [DOI:10.1080/03461230510009763]
12. Fayomi, A., Tahir, M. H., Algarni, A., Imran, M. and Jamal, F. (2022). A New Useful Exponential Model with Applications to Quality Control and Actuarial Data. Comput. Intell. Neurosci., 2489998. [DOI:10.1155/2022/2489998] [PMID] []
13. Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., and Zwillinger, D. (2007). Table of Integrals, Series, and Products (7th ed.). Academic Press.
14. Ibragimov, R. and Prokhorov, A. (2017), Heavy Tails and Copulas:Topics in Dependence Modelling in Economics and Finance, World Scientific.
15. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models:From Data to Decisions, John Wiley & Sons. [DOI:10.1002/9781118787106]
16. Lane, M. N. (2000), Pricing Risk Transfer Transactions, ASTIN Bulletin, 30(2), 259-293. [DOI:10.2143/AST.30.2.504635]
17. Rooks, B., Schumacher, A., and Cooray, K. (2020), The power Cauchy Distribution: Derivation, description, and Composite Models, NSF-REU Program Reports, 2010.
18. Rosaiah, K., Kantam, R. R. L., and Kumar, S. (2006). Reliability Test Plans for Exponentiated Log-Logistic Distribution, Economic Quality Control, 21(2), 279-289. [DOI:10.1515/EQC.2006.279]
19. Shafaei Noughabi, M., Khorashadizade, M. (2025). On Properties of a New Generalization of the Log-Logistic Distribution and Its Application. JSS, 19 (1) ,117-136. [DOI:10.61186/jss.19.1.6]
20. Sapkota, L. P., and Kumar, V. (2023), Applications and Some Characteristics of Inverse Power Cauchy Distribution, Reliability Theory and Applications, 18(1), 301-315.