1. موسوی، ن. و گلعلیزاده م. (1402)، رویکردی نوین در بکارگیری روش دسته ماشین بردار پشتیبان تصادفی در تحلیل داده های بیان ژن سرطان پروستات، مجله علوم آماری، 17(2)، 459-476 2. Abaszade, M., and Effati, S. (2018), Stochastic Support Vector Regression with Probabilistic Constraints. Applied Intelligence, 48, 243-256. 3. Abaszade, M., and Effati, S. (2019), A New Method for Classifying Random Variables Based on Support Vector Machine. Journal of Classification, 36, 152-174. 4. Al-Ma'shumah, F., Razmkhah, M., and Effati, S. (2022), Expectation-based and Quantile-based Probabilistic Support Vector Machine Classification for Histogram-Valued Data. International Journal on Electrical Engineering and Informatics, 14(1), 5. Barnett, N. S., Dragomir, S. S., and Agarwal, R. P. (2002), Some Inequalities for Probability, Expectation, and Variance of Random Variables Defined over a Finite Interval. Computers and Mathematics with Applications, 43 (10-11), 1319-1357. 6. Benítez-Peña, S., Blanquero, R., Carrizosa, E., and Ramírez-Cobo, P. (2024), Cost-sensitive Probabilistic Predictions for Support Vector Machines. European Journal of Operational Research, 314(1), 268-279. 7. Bosch, P., López, J., Ramírez, H., and Robotham, H. (2013), Support Vector Machine under Uncertainty: An application for hydroacoustic classification of fish-schools in Chile. Expert Systems with Applications, 40(10), 4029-4034. 8. Chen, W. J., Shao, Y. H., Li, C. N., and Deng, N. Y. (2016), MLTSVM: A Novel Twin Support Vector Machine to Multi-label Learning. Pattern Recognition, 52, 61-74. 9. Cortes, C., and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 273-297. 10. Crammer, K., and Singer, Y. (2001), On the Algorithmic Implementation of Multi-class Kernel-based Vector Machines. Journal of Machine Learning Research, 2, 265-292. 11. Don, D. R., and Iacob, I. E. (2020), DCSVM: Fast Multi-class Classification Using Support Vector Machines. International Journal of Machine Learning and Cybernetics, 11(2), 433-447. 12. Dua, D., and Graff, C. (2019). UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu/ . 13. Gonen, M., Tanugur, A. G., and Alpaydin, E. (2008), Multi-class Posterior Probability Support Vector Machines. IEEE Transactions on Neural Networks, 19(1), 130-139. 14. Hastie, T., and Tibshirani, R. (1998), Classification by Pairwise Coupling. The Annals of Statistics, 26(2), 451-471 15. He, X., Wang, Z., Jin, C., Zheng, Y., and Xue, X. (2012), A Simplified Multi-class Support Vector Machine with Reduced Dual Optimization. Pattern Recognition Letters, 33(1), 71-82. 16. Knerr, S., Personnaz, L., and Dreyfus, G. (1990), Single-layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. In Neurocomputing: Algorithms, Architectures and Applications, 41-50. 17. Li, H. X., Yang, J. L., Zhang, G., and Fan, B. (2013), Probabilistic Support Vector Machines for Classification of Noise Affected Data. Information Sciences, 221, 60-71. 18. Madjarov, G., Gjorgjevikj, D., and Chorbev, I. (2009), A Multi-Class SVM Classifier Utilizing Binary Decision Tree. Informatica, 33, 225-233 19. Mooney, C. Z. (1997), Monte Carlo Simulation,116. Sage. 20. Moosaei, H., and Hladík, M. (2022), Least Squares Approach to K-SVCR Multi-Class Classification with its Applications. Annals of Mathematics and Artificial Intelligence, 90(7), 873-892. 21. Mosavi, N., and Golalizadeh, M. (2014), A New Approach in Using Random Support Vector Machine Cluster in Analyzing Prostate Cancer Gene Expression Data, Journal of Statistical Sciences, 17(2), 459-476. 22. Platt, J., Cristianini, N., and Shawe-Taylor, J. (1999), Large Margin DAGs for Multi-class Classification. NIPS'99: Proceedings of the 13th International Conference on Neural Information Processing Systems, 12, 547 - 553. 23. Sahleh, A., Salahi, M., and Eskandari, S. (2023), Multi-Class Nonparallel Support Vector Machine. Progress in Artificial Intelligence, 12(4), 349-361. 24. Schiilkop, P. B., Burgest, C., and Vapnik, V. (1995), Extracting Support Data for a Given Task. KDD'95: Proceedings of the First International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, 252--257. 25. Vapnik, V. N. (1995), The nature of statistical learning theory. NY: Springer-Verlag. 26. Vapnik, V. N. (1999), An Overview of Statistical Learning Theory. IEEE Transactions on Neural Networks, 10(5), 988-999. 27. Weston, J., and Watkins, C. (1999), Support Vector Machines for Multi-class Pattern Recognition, The European Symposium on Artificial Neural Networks, 99, 219-224. 28. Yazdi, H. S., Effati, S., and Saberi, Z. (2007), The Probabilistic Constraints in the Support Vector Machine. Applied Mathematics and Computation, 194(2), 467-479.
|