1. موسوی، ن. و گلعلیزاده م. (1402)، رویکردی نوین در بکارگیری روش دسته ماشین بردار پشتیبان تصادفی در تحلیل داده های بیان ژن سرطان پروستات، مجله علوم آماری، 17(2)، 459-476 2. Abaszade, M., and Effati, S. (2018), Stochastic Support Vector Regression with Probabilistic Constraints. Applied Intelligence, 48, 243-256. [ DOI:10.1007/s10489-017-0964-6] 3. Abaszade, M., and Effati, S. (2019), A New Method for Classifying Random Variables Based on Support Vector Machine. Journal of Classification, 36, 152-174. [ DOI:10.1007/s00357-018-9282-x] 4. Al-Ma'shumah, F., Razmkhah, M., and Effati, S. (2022), Expectation-based and Quantile-based Probabilistic Support Vector Machine Classification for Histogram-Valued Data. International Journal on Electrical Engineering and Informatics, 14(1), [ DOI:10.15676/ijeei.2022.14.1.15] 5. Barnett, N. S., Dragomir, S. S., and Agarwal, R. P. (2002), Some Inequalities for Probability, Expectation, and Variance of Random Variables Defined over a Finite Interval. Computers and Mathematics with Applications, 43 (10-11), 1319-1357. [ DOI:10.1016/S0898-1221(02)00103-7] 6. Benítez-Peña, S., Blanquero, R., Carrizosa, E., and Ramírez-Cobo, P. (2024), Cost-sensitive Probabilistic Predictions for Support Vector Machines. European Journal of Operational Research, 314(1), 268-279. [ DOI:10.1016/j.ejor.2023.09.027] 7. Bosch, P., López, J., Ramírez, H., and Robotham, H. (2013), Support Vector Machine under Uncertainty: An application for hydroacoustic classification of fish-schools in Chile. Expert Systems with Applications, 40(10), 4029-4034. [ DOI:10.1016/j.eswa.2013.01.006] 8. Chen, W. J., Shao, Y. H., Li, C. N., and Deng, N. Y. (2016), MLTSVM: A Novel Twin Support Vector Machine to Multi-label Learning. Pattern Recognition, 52, 61-74. [ DOI:10.1016/j.patcog.2015.10.008] 9. Cortes, C., and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 273-297. [ DOI:10.1007/BF00994018] 10. Crammer, K., and Singer, Y. (2001), On the Algorithmic Implementation of Multi-class Kernel-based Vector Machines. Journal of Machine Learning Research, 2, 265-292. 11. Don, D. R., and Iacob, I. E. (2020), DCSVM: Fast Multi-class Classification Using Support Vector Machines. International Journal of Machine Learning and Cybernetics, 11(2), 433-447. [ DOI:10.1007/s13042-019-00984-9] 12. Dua, D., and Graff, C. (2019). UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu/ . 13. Gonen, M., Tanugur, A. G., and Alpaydin, E. (2008), Multi-class Posterior Probability Support Vector Machines. IEEE Transactions on Neural Networks, 19(1), 130-139. [ DOI:10.1109/TNN.2007.903157] [ PMID] 14. Hastie, T., and Tibshirani, R. (1998), Classification by Pairwise Coupling. The Annals of Statistics, 26(2), 451-471 [ DOI:10.1214/aos/1028144844] 15. He, X., Wang, Z., Jin, C., Zheng, Y., and Xue, X. (2012), A Simplified Multi-class Support Vector Machine with Reduced Dual Optimization. Pattern Recognition Letters, 33(1), 71-82. [ DOI:10.1016/j.patrec.2011.09.035] 16. Knerr, S., Personnaz, L., and Dreyfus, G. (1990), Single-layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. In Neurocomputing: Algorithms, Architectures and Applications, 41-50. [ DOI:10.1007/978-3-642-76153-9_5] 17. Li, H. X., Yang, J. L., Zhang, G., and Fan, B. (2013), Probabilistic Support Vector Machines for Classification of Noise Affected Data. Information Sciences, 221, 60-71. [ DOI:10.1016/j.ins.2012.09.041] 18. Madjarov, G., Gjorgjevikj, D., and Chorbev, I. (2009), A Multi-Class SVM Classifier Utilizing Binary Decision Tree. Informatica, 33, 225-233 19. Mooney, C. Z. (1997), Monte Carlo Simulation,116. Sage. [ DOI:10.4135/9781412985116] 20. Moosaei, H., and Hladík, M. (2022), Least Squares Approach to K-SVCR Multi-Class Classification with its Applications. Annals of Mathematics and Artificial Intelligence, 90(7), 873-892. [ DOI:10.1007/s10472-021-09747-1] 21. Mosavi, N., and Golalizadeh, M. (2014), A New Approach in Using Random Support Vector Machine Cluster in Analyzing Prostate Cancer Gene Expression Data, Journal of Statistical Sciences, 17(2), 459-476. [ DOI:10.61186/jss.17.2.4] 22. Platt, J., Cristianini, N., and Shawe-Taylor, J. (1999), Large Margin DAGs for Multi-class Classification. NIPS'99: Proceedings of the 13th International Conference on Neural Information Processing Systems, 12, 547 - 553. 23. Sahleh, A., Salahi, M., and Eskandari, S. (2023), Multi-Class Nonparallel Support Vector Machine. Progress in Artificial Intelligence, 12(4), 349-361. [ DOI:10.1007/s13748-023-00308-7] 24. Schiilkop, P. B., Burgest, C., and Vapnik, V. (1995), Extracting Support Data for a Given Task. KDD'95: Proceedings of the First International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, 252--257. 25. Vapnik, V. N. (1995), The nature of statistical learning theory. NY: Springer-Verlag. [ DOI:10.1007/978-1-4757-2440-0] [ PMID] 26. Vapnik, V. N. (1999), An Overview of Statistical Learning Theory. IEEE Transactions on Neural Networks, 10(5), 988-999. [ DOI:10.1109/72.788640] [ PMID] 27. Weston, J., and Watkins, C. (1999), Support Vector Machines for Multi-class Pattern Recognition, The European Symposium on Artificial Neural Networks, 99, 219-224. 28. Yazdi, H. S., Effati, S., and Saberi, Z. (2007), The Probabilistic Constraints in the Support Vector Machine. Applied Mathematics and Computation, 194(2), 467-479. [ DOI:10.1016/j.amc.2007.04.109]
|