[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Parameter Estimation of AR(1) Model with Change Point and Its Application in Annual Inflation Rate Modeling
Arezu Rahmanpour , Yadollah Waghei * , Gholam Reza Mohtashami Borzadaran
Abstract:   (523 Views)
Change point detection is one of the most challenging statistical problems because the number and position of these points are unknown. In this article, we will first introduce the concept of change point and then obtain the parameter estimation of the first-order autoregressive model AR(1); in order to investigate the precision of estimated parameters, we have done a simulation study. The precision and consistency of parameters were evaluated using MSE. The simulation study shows that parameter estimation is consistent. In the sense that as the sample size increases, the MSE of different parameters converges to zero. Next, the AR(1) model with the change point was fitted to Iran's annual inflation rate data (from 1944 to 2022), and the inflation rate in 2023  and 2024 was predicted using it.
Keywords: Autoregressive Model, Change Point, Parameter Estimation, Time Series
Full-Text [PDF 343 kb]   (273 Downloads)    
Type of Study: Research | Subject: Time Series
Received: 2024/09/30 | Accepted: 2024/08/31
References
1. Nowferesti, M. (2016), Unit root and integrating in econometrics, Rasa Publication, Tehran, Iran.[In persian]
2. Akashi, F., Dette, H. and Liu,Y. (2018). Change point detection in autoregressive models with no moment assumptions. Journal of Time Series Analysis,763-786. [DOI:10.1111/jtsa.12405]
3. Chakar, S., Lebarbier, E., Levy-Leduc, C. and Robin, S. (2017). A robust approach for estimating change-points in the mean of an AR (1) process. Bernoulli, 23(2), 1408-1447. [DOI:10.3150/15-BEJ782]
4. Cryer, J. and Chan, K. S.(2008). Time Series Analysis with Applications in R. Springer, New York. [DOI:10.1007/978-0-387-75959-3]
5. Dokumentov, A., and Hyndman, R. J.(2022). STR: Seasonal-trend decomposition using regression. .Informs Journal on Data Science, 1(1), 50-62. [DOI:10.1287/ijds.2021.0004]
6. Gombay, E. (2008). Change detection in autoregressive time series. Journal of Multivariate Analysis, 99(3),451-464. [DOI:10.1016/j.jmva.2007.01.003]
7. Hrishnaiah, P. R., and Miao, B. Q. (1988).Review about estimation of change point. Handbook in Statistics. Quality Control and Reliability, North-Holland,375-402. [DOI:10.1016/S0169-7161(88)07021-X]
8. Huskova, M., Praskova, Z. and Steinebach, J. G. (2020) . Estimating a gradual parameter change in an AR (1)-process. Sląski Przegląd Statystyczny, 18 (24), 254-262. [DOI:10.15611/sps.2020.18.16]
9. Pang,T., Zhang,D. and Chong,T.L. (2014). Asymptotic inferences for an AR (1) model with a change point: stationary and nearly non-stationary cases. Journal of Time Series Analysis, 35 (2), 133-150. [DOI:10.1111/jtsa.12055]
10. Page, E.S. (1954). Continuous inspection schemes. Biometrika, 1, 100-115. https://doi.org/10.2307/2333009 [DOI:10.1093/biomet/41.1-2.100]
11. Priyadarshana, M. and Sofronov, G. (2012). A modified cross-entropy method for detecting change-points in the Sri-Lankan stock market. In Proceedings of the IASTED International Conference on Engineering and Applied Science, EAS 2012, 319-326. [DOI:10.2316/P.2012.785-041]
12. Sofronov, G., Polushina, T. and Priyadarshana, M. (2012).Sequential change-point detection via the rossentropy method. In B. Reljin and S. Stankovic (Eds.), The 11th Symposium on Neural Network Applications in Electrical Engineering , 185-188. [DOI:10.1109/NEUREL.2012.6420004]
13. Sofronov,G. and Ma, L. (2017). Change-point detection in time series data via the Cross-Entropy method. In Proceedings of the 22nd International Congress on Modelling and Simulation, Tasmania, Australia, 8 December 2017;pp. 195-201.
14. Shao, X. and Zhang, X. (2010). Testing for change points in time series. Journal of the American Statistical Association, 105(491), 1228-1240. [DOI:10.1198/jasa.2010.tm10103]
15. Timmer, D. H. and Pignatiello Jr, J. J. (2003). Changepoint estimates for the parameters of an AR(1) process. Quality and Reliability Engineering International, 19(4): 355-369. [DOI:10.1002/qre.589]
16. Xie, X., Brown, J.S., Bush, D., and Eckert, C.A. (2005). Bubble and dew point measurements of the ternary system carbon dioxide + methanol + hydrogen at 313.2 k. Journal of Chemical Engineering Data, 50( 3), 780-783. [DOI:10.1021/je0498614]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4703