1. جلیلی، م.، بشیری، م.، منطقی، م. و توفیق، ع. (1395)، توسعه رویکردی مبتنی بر رگرسیون تکه ای برای پایش پروفایل های خطی چندگانه با اثرات متقابل در فاز، مهندسی و مدیریت کیفیت، 6، 237-249. 2. جعفری، ف.، و گلعلیزاده، م. (1402)، مدلبندی رگرسیونی چندکی آمیخته تاوانیده دوگانه از طریق رویکرد درستنمایی، مجله علوم آماری، 17، 389-405. 3. Birnbaum, Z. W., and Saunders, S. C. (1969), A New Family of Life Distributions, Journal of Applied Probability, 6 (2), 319-327. [ DOI:10.2307/3212003] 4. Chang, S. T. and Lu, K. P. (2016), Change-Point Detection for Shifts in Control Charts Using EM Change-Point Algorithms, Quality and Reliability Engineering International, 32, 889-900. [ DOI:10.1002/qre.1800] 5. Chang, S. T, Lu, K. P. and Yang, M. S. (2015), Fuzzy Change-Point Algorithms for Regression Models, IEEE Transactions on Fuzzy Systems, 23 (6), 2343-2357. [ DOI:10.1109/TFUZZ.2015.2421072] 6. Chen, C. W. S., Chan, J. S., Gerlach K. R., and Hsieh, W. Y. L. (2011), A Comparison of Estimators for Regression Models with Change Points, Statistics and Computing, 21, 395-414. [ DOI:10.1007/s11222-010-9177-0] 7. Ciuperca, G. (2009), The M-Estimation in a Multi-Phase Random Nonlinear Model, Statistics & Probability Letters, 75, 573-580. [ DOI:10.1016/j.spl.2008.10.003] 8. Ciuperca, G. (2011), A General Criterion to Determine the Number of Change-Points, Statistics & Probability Letters, 81, 1267-1275. [ DOI:10.1016/j.spl.2011.03.027] 9. Ciuperca, G. (2004), Maximum Likelihood Estimator in a Two-Phase Nonlinear Regression Model, Statistics & Decisions, 22, 335-349. [ DOI:10.1524/stnd.22.4.335.64312] 10. Ciuperca, G. and Dapzol, N. (2008), Maximum Likelihood Estimator in a Multi-Phase Random Regression Model, Statistics, 42, 363-381 [ DOI:10.1080/02331880801980310] 11. Dempster, A. P., Laird N. M., and Rubin D. B. (1977), Maximum Likelihood From Incomplete 12. Data via the EM-Algorithm, Journal of the Royal Statistical Society. Series B (methodological), 39, 1-38. 13. Fearnhead, P. (2006), Exact and Efficient Bayesian Inference for Multiple Change-Point Problems, Statistics and Computing, 16, 203-213. [ DOI:10.1007/s11222-006-8450-8] 14. Jafari, F. and Golalizadeh, M. (2024), Double Penalized Mixed Effects Quantile Regression Modeling Using the Maximum Likelihood Approach, Journal of Statistical Sciences, 17(2), 389-405. [ DOI:10.61186/jss.17.2.2] 15. Jalili, M., Bashiri, M., Manteghi, M. and Tofigh, A. A. (2017). Development of a Piecemeal Regression-Based Approach for Monitoring Multiple Linear Profiles with Phase Interactions. Journal of Quality Engineering and Management, 6(4), 237-249. 16. Julious, S. A. (2001). Inference and Estimation in a Change Point Regression Problem, Journal of the Royal Statistical Society Series D, 50, 51-61. [ DOI:10.1111/1467-9884.00260] 17. Karl, T.R., Knight, R.W. and Baker, B. (2000), The Record Breaking Global Temperatures of 1997 and 1998: Evidence for an Increase in the Rate of Global Warming?, Geophysical Research Letters, 27 (5), 719-722 [ DOI:10.1029/1999GL010877] 18. Keshavarz, M. and Huang, B. (2014a), Bayesian and Expectation Maximization Methods for Multivariate Change-Point Detection, Computers & Chemical Engineering, 60, 339-353. [ DOI:10.1016/j.compchemeng.2013.09.012] 19. Keshavarz M. and Huang, B. (2014b), Expectation Maximization Method for Multivariate Change-Point Detection in Presence of Unknown and Changing Covariance, Computers & Chemical Engineering, 69, 128-146. [ DOI:10.1016/j.compchemeng.2014.06.016] 20. Loschi, R. H., Pontel, J. G. and Cruz F. R. B. (2010), Multiple Change-Point Analysis for Linear Regression models, Chilean Journal of Statistics, 1, 93-112. 21. Lu, K. P., and Chang, S. T. (2021), Robust Algorithms for Change-Point Regressions Using the t-Distribution, Mathematics, 9, 2394. [ DOI:10.3390/math9192394] 22. Menne, J. M. (2005), Abrupt Global Temperature Change and the Instrumental Record, In: Record, 18th Conference on Climate Variability and Change. 23. Muggeo, V. M. R. (2008), Segmented: an R package to Fit Regression Models with Broken-Line Relationships, R News, 8, 20-25. 24. von Ottenbreit, M., and De Bin, R. (2024), Automatic Piecewise Linear regression, Computational Statistics, 1-41. [ DOI:10.1007/s00180-024-01475-4] 25. Yang, F. (2014), Robust Mean Change-Point Detecting Through Laplace Linear Regression Using EM Algorithm, Journal of Applied Mathematics, 2014 (1): 856350. [ DOI:10.1155/2014/856350] 26. Yildirim S., Singh S.S., and Doucet A. (2014), An Online Expectation-Maximization Algorithm for Change-Point Models, Journal of Computational and Graphical Statistics, 22(4), 906-26. [ DOI:10.1080/10618600.2012.674653]
|