۱. کریمی، الف. و حسینی، ف. (۱۴۰۰)، معرفی یک میدان تصادفی مانای چوله گاوسی، مجله علوم آماری، ۱۵(۲)، ۵۶۶−۵۴۹. 2. Anselin, L. (1990), Spatial dependence and spatial structural instability in applied re gression analysis, Journal of Regional Science, 30, 185–207. 3. Basu, S. and Reinsel, G.C. (1994), Regression models with spatially correlated errors, Journal of the American Statistical Association, 89, 88–99. 4. Cabral, R., Bolin, D. and Rue, H., (2024), Fitting Latent NonGaussian Models Using Variational Bayes and Laplace Approximations, Journal of the American Statistical Association, DOI: 10.1080/01621459.2023.2296704 5. Cressie, N. (1993), Statistics for Spatial Data, Revised Edition, John Wiley, New York. 6. GonzalezFarias, G., DominguezMolina, A. and Gupta, A. K. (2004), The closed skew normal distribution. In: Genton M. G., ed. Skewelliptical distributions and their applications: A journey beyond normality. Boca Raton, FL: Chapman and Hall CRC, 2542. 7. Karimi, O. (2023), A Hamiltonian Monte Carlo EM algorithm for Generalized Linear Mixed Models with Spatial Skew Latent Variables, Statistical Paper, https://doi.org/10.1007/s0036202301419y. 8. Karimi, O. and Mohammadzadeh, M. (2012), Bayesian Spatial Regression Models with Closed Skew Normal Correlated Errors and Missing, Statistical Papers, 53(1), 205-218. 9. Karimi, O., Omre, H. and Mohammadzadeh, M. (2010), Bayesian Closedskew Gaus sian Inversion of Seismic AVO Data for Elastic Material Properties, Geophysics, 75, R1-R11. 10. MárquezUrbina, O.U. and GonzálezFarías, G. (2022), A flexible special case of the CSN for spatial modeling and prediction, Spatial Statistics, 47, 100556. 11. Kim, H.M. and Mallick, B.K. (2004), A Bayesian Prediction using the Skew Gaussian Distribution, Journal of Statistical Planning and Inference, 120, 85–101. 12. Lee, J. and Huang, Y. (2022), Covid19 impact on US housing markets: evidence from spatial regression models, Spatial Economic Analysis, 17:3, 395-415. 13. Oh, M., Shina, D.W. and Kim, H.J. (2002), Bayesian analysis of regression models with spatially correlated errors and missing observations, Computational Statistics and Data Analysis, 39, 387–400. 14. Ormerod, J. T. and Wand, M. P. (2010), Explaining Variational Approximations, The American Statistician, 64(2), 140–153. 15. Tan, L. S. and Nott, D. J. (2013), Variational Inference For Generalized Linear Mixed Models Using Partially Noncentered Parametrizations, Statistical Science, 28, 168-188. 16. Zhang, Q. Lu, S. and Xie, L. (2023), Shaowu Gu, Hongye Su, Variational Bayesian State Space Model for dynamic process fault detection, Journal of Process Con trol, 124, 129141.
|