1. Abbasnejad, M. and Arghami, N. R. (2011) Renyi Entropy Properties of Order Statistics, Communications in Statistics-Theory and Methods 40, 40-52. [ DOI:10.1080/03610920903353683] 2. Ahrari, V., Baratpour, S. and Habibirad, A. (2019) Quantile-Based Tsallis Residual Entropy and its Divergence Measure. Journal of Statistical Sciences, 12(2), 295-321. [ DOI:10.29252/jss.12.2.295] 3. Alomani, G. and Kayid, M. (2023), Further Properties of Tsallis Entropy and Its Application. Entropy, 25(2), 199. [ DOI:10.3390/e25020199] [ PMID] [ ] 4. Bagai, I. and Kochar, S. C. (1986), On Tail-ordering and Comparison of Failure Rates. Communications in Statistics-Theory and Methods, 15(4), 1377-1388. [ DOI:10.1080/03610928608829189] 5. Baratpour, S. and Khammar, A. (2016), Tsallis Entropy Properties of Order Statistics and Some Stochastic Comparison, Journal of Statistical Physics, 52, 479-487. 6. Barlow, R. E. and Proschan, F. (1975), Statistical Theory of Reliability and Life testing, New York: Holt, Rinehart and Winston. 7. Ebrahimi, N., Soofi, E. S. and Zahedi, H. (2004) Information Properties of Order Statistics and Spacings, Communications in Statistics-Theory and Methods 40, pp. 40-52. 8. Kayid, M. and Alshehri, M. A. (2023), Tsallis Entropy of a Used Reliability System at the System Level, Entropy, 25(4), 550. [ DOI:10.3390/e25040550] [ PMID] [ ] 9. Kayid, M. and Alshehri, M. A. (2023), Tsallis Entropy for the Past Lifetime Distribution with Application, Axioms, 12(8), 731. [ DOI:10.3390/axioms12080731] 10. Kochar, S. C., Mukerjee, H. and Samaniego, F. J. (1999) The Signature of a Coherent System and its Application to Comparisons Among systems,Naval Research Logistics 4, 507-523.
https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D [ DOI:10.1002/(SICI)1520-6750(199908)46:53.0.CO;2-D] 11. Renyi, A. (1961) On Measures of Entropy and Information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability,. University of California Press, Berkeley. 547- 561. 12. Samaniego, F. J. (2007), System Signatures and Their Applications in Engineering Reliability, New York: Springer, International Series in Operations Research and Management Science, 110. [ DOI:10.1007/978-0-387-71797-5] 13. Sanei Tabass, M. and Mohtashami Borzadaran, G. (2017), The Generalization of Maximum Entropy Principle for Generalized Information Measures. Journal of Statistical Sciences, 11(1), 101-118. [ DOI:10.29252/jss.11.1.101] 14. Sbert, M. and Szirmay-Kalos, L. (2022), Robust Multiple Importance Sampling with Tsallis φ-Divergences, Entropy, 24(9), 1240. [ DOI:10.3390/e24091240] [ PMID] [ ] 15. Shaked, M. and Shanthikumar, J. G. (2007), Stochastic Orders, Springer Science and Business Media, 2007. [ DOI:10.1007/978-0-387-34675-5] 16. Shannon, C.E. (1948), A Mathematical Theory of Communication, The Bell System Technical Journal, 27(3), 379-423. [ DOI:10.1002/j.1538-7305.1948.tb01338.x] 17. Toomaj, A. (2017), Renyi Entropy Properties of Mixed Systems, Communications in Statistics-Theory and Methods, 46(2), 906-916. [ DOI:10.1080/03610926.2015.1006785] 18. Toomaj, A. and Doostparast, M. (2014), A note on Signature-based Expressions for the Entropy of Mixed r-out-of-n Systems, Naval Research Logistics, 61(3), 202-206. [ DOI:10.1002/nav.21577] 19. Toomaj, A., and Doostparast, M. (2015), Comparisons of Mixed Systems with Decreasing Failure Rate Component Lifetimes using Dispersive Order, Applied Stochastic Models in Business and Industry, 31(6), 801-808. [ DOI:10.1002/asmb.2102] 20. Tsallis, C. (1988), Possible Generalization of Boltzmann-gibbs Statistics., Journal of statistical Physics, 52, 479-487. [ DOI:10.1007/BF01016429] 21. Wong, K. M. and Chen, S. H. (1990), The Entropy of Ordered Sequences and Order Statistics, IEEE Transactions on Information Theory, 36, 276-284. [ DOI:10.1109/18.52473]
|