|
|
|
|
|
 |
Search published articles |
 |
|
General users only can access the published articles
Showing 22 results for Subject:
Dr Adeleh Fallah, Volume 19, Issue 1 (9-2025)
Abstract
In this paper, estimation for the modified Lindley distribution parameter is studied based on progressive Type II censored data. Maximum likelihood estimation, Pivotal estimation, and Bayesian estimation were calculated using the Lindley approximation and Markov chain Monte Carlo methods. Asymptotic, Pivotal, bootstrap, and Bayesian confidence intervals are provided. A Monte Carlo simulation study has been conducted to evaluate and compare the performance of different estimation methods. To further illustrate the introduced estimation methods, two real examples are provided.
Shahram Yaghoobzadeh, Volume 19, Issue 2 (4-2025)
Abstract
Studying various models in queueing theory is essential for improving the efficiency of queueing systems. In this paper, from the family of models {E_r/M/c; r,c in N}, the E_r/M/3 model is introduced, and quantities such as the distribution of the number of customers in the system, the average number of customers in the queue and in the system, and the average waiting time in the queue and in the system for a single customer are obtained. Given the crucial role of the traffic intensity parameter in performance evaluation criteria of queueing systems, this parameter is estimated using Bayesian, E‑Bayesian, and hierarchical Bayesian methods under the general entropy loss function and based on the system’s stopping time. Furthermore, based on the E‑Bayesian estimator, a new estimator for the traffic intensity parameter is proposed, referred to in this paper as the E^2‑Bayesian estimator. Accordingly, among the Bayesian, E‑Bayesian, hierarchical Bayesian, and the new estimator, the one that minimizes the average waiting time in the customer queue is considered the optimal estimator for the traffic intensity parameter in this paper. Finally, through Monte Carlo simulation and using a real dataset, the superiority of the proposed estimator over the other mentioned estimators is demonstrated.
|
|
|
|
|
|
|
|
|
|
|