[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
اطلاعات نشریه::
آرشیو مجله و مقالات::
ثبت نام و اشتراک::
ارسال مقاله::
پایگاه‌های مرتبط::
برای داوران::
اخلاق در پژوهش::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Google Scholar Metrics

Citation Indices from GS

AllSince 2020
Citations4817
h-index32
i10-index00
..
ثبت شده در

AWT IMAGE


..
نماد اعتماد الکترونیکی
..
آمار نشریه
تعداد دوره های نشریه: 19
تعداد شماره ها: 38
تعداد مشاهده ی مقالات: 3452656
تعداد دریافت (دانلود) مقالات: 933060

مقالات دریافت شده: 864
مقالات پذیرفته شده: 362
مقالات رد شده: 491
مقالات منتشر شده: 359

نرخ پذیرش: 41.9
نرخ رد: 56.83

میانگین دریافت تا پذیرش: 401 روز
میانگین دریافت تا اولین داوری: 5.7 روز
میانگین پذیرش تا انتشار: 510.2 روز
____
..
:: جستجو در مقالات منتشر شده ::
3 نتیجه برای یادگیری ماشین

زهرا رضائی قهرودی، ژینا آقامحمدی،
جلد 16، شماره 1 - ( 6-1401 )
چکیده

با ظهور مِه‌داده‌ها در دو دهۀ گذشته، به منظور بهره‌برداری و استفاده از این نوع داده‌ها، نیاز به یکپارچه‌سازی پایگاه‌داده‌ها با هدف تصمیم‌گیری براساس شواهد و اطلاعات قوی‌تر، بیش از پیش احساس می‌شود. لذا آشنایی با روش‌‌شناسی اتصال رکوردی به عنوان یکی از روش‌های یکپارچه‌سازی داده‌ها و همچنین استفاده از روش‌های یادگیری ماشین برای سهولت فرآیند اتصال رکوردها ضروری است. در این مقاله، ضمن تشریح فرایند اتصال رکوردی و برخی روش‌های مرتبط با آن، با استفاده از روش‌های یادگیری ماشین، برای افزایش سرعت یکپارچه‌سازی پایگاه‌داده‌ها، کاهش هزینه و بهبود عملکرد اتصال رکوردی، دو پایگاه‌دادۀ چارچوب کارگاه‌های صنعتی مرکز آمار ایران و سازمان تامین اجتماعی به یکدیگر متصل شده‌اند. 


عبدالرضا سیاره، سعیده عبدالله‌زاده،
جلد 18، شماره 2 - ( 12-1403 )
چکیده

با پیشرفت فناوری‌های توالی‌یابی، آزمایش غیرتهاجمی NIPT توسعه یافته است و در غربالگری تریزومی 21 از طریق تشخیص DNA جنین موجود در خون مادر، استفاده می‌شود. برای تحلیل داده‌های  NIPT معمولاً از آزمون Z  استفاده می‌شود. در روش‌های  مورد استفاده برای تشخیص سندرم داون احتمال تشخیص اشتباه وجود دارد. بنابراین ارائۀ روشی که بتواند در کنار روش‌های تشخیصی به‌کار برده شود و کارایی این روش‌ها را بهبود بخشد؛ ضروری است.     هدف اصلی این مقاله طراحی مدلی بر اساس الگوریتم‌های یادگیری ماشین برای تشخیص زودهنگام سندرم داون است؛ به‌طوری‌ که بتوان از این روش‌ها  برای افزایش دقت تشخیص  استفاده کرد. در این مقاله به بهبود روش‌های تشخیصی به کمک الگوریتم‌های یادگیری ماشین  مانند: ماشین بردار پشتیبان، بیز ساده، درخت تصمیم، جنگل تصادفی و نزدیکترین همسایه برای بررسی یک مجموعه دادۀ مربوط به سندرم داون پرداخته شده است.  عملکرد هر یک از مدل‌ها در مجموعه دادۀ سندرم داون بررسی و در نهایت مناسب‌ترین مدل برای این هدف معرفی شده است. نتایج نشان می‌دهند که این الگوریتم‌ها دقت بسیار مناسبی در تشخیص این بیماری دارند.
مهرداد قادری، زهرا رضائی قهرودی، مینا گندمی،
جلد 19، شماره 1 - ( 6-1404 )
چکیده

نحوه برخورد با داده‌های گم‌شده یکی از مسائلی است که اغلب محققان با آن روبرو هستند. جانهی چندگانه با استفاده از معادله‌های زنجیره‌ای یکی از رایج‌ترین و انعطاف‌پذیرترین روش‌ها برای جانهی است.  از دیدگاه تئوری، هر مدل جانهی می‌تواند  برای پیش‌بینی مقادیر داده‌های گم‌شده استفاده شود اما اگر مدل‌های پیشگویی نادرست باشند می‌تواند منجر به برآوردهای اریب و استنباط‌های نامعتبر شود. یکی از جدیدترین راه‌حل‌ها برای برخورد با داده‌های گم‌شده، روش‌ ترکیبی یادگیری ماشین و ابریادگیرنده است. در این مقاله،  چند شبیه‌سازی‌ برای نشان دادن رویکرد بهتر این روش از نظر اریبی کمتر و همگرایی بهتر برآورد پارامتر نهایی نسبت به  روش‌های جانهی رایج ارائه شده است.  همچنین، به پیاده‌سازی برخی روش‌های یادگیری ماشین و یک الگوریتم ترکیبی از ابریادگیرنده، روی داده‌های کارگاه‌های صنعتی  پرداخته شده است که در آن جانهی متغیرهای مختلف در داده‌ها به‌طور همزمان صورت می‌گیرد. همچنین به ارزیابی روش‌های مختلف  و معرفی روش دارای عملکرد برتر، پرداخته شده است.



صفحه 1 از 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.04 seconds with 35 queries by YEKTAWEB 4710