|
|
|
 |
جستجو در مقالات منتشر شده |
 |
|
11 نتیجه برای تقریب
کبری قلی زاده، محسن محمدزاده، زهرا قیومی، جلد 7، شماره 1 - ( 6-1392 )
چکیده
در تحلیل بیزی مدلهای رگرسیون جمعی ساختاری که قالبی انعطاف پذیر از مدلهای آماری در زمینههای کاربردی دارند توزیعهای پسینی فرم بستهای ندارند و استفاده از الگوریتمهای مونت کارلوی زنجیر مارکوفی به دلیل پیچیده بودن و تعداد زیاد پارامترهای این مدل زمانبر هستند. روش تقریب لاپلاس آشیانی جمع بسته میتواند با استفاده از تقریبهای گاوسی و لاپلاس نیاز به شبیهسازیهای سنگین را مرتفع سازد. در این مقاله نحوه لحاظ کردن همبستگی فضایی دادهها در مدلهای رگرسیونی جمعی ساختاری و برآورد پارامترهای آن با تقریب لاپلاس آشیانی جمعبسته مورد مطالعه قرار میگیرند. سپس دادههای جرم شهر تهران با این روش مدلبندی شده و در مطالعهای شبیهسازی، دقت و سرعت محاسبه مدلهای حاصل از تقریب لاپلاس آشیانی جمع بسته و الگوریتمهای مونت کارلوی زنجیر مارکوفی مورد ارزیابی و مقایسه قرار میگیرند
نسرین مرادی، عبدالرضا سیاره، هانیه پناهی، جلد 8، شماره 1 - ( 6-1393 )
چکیده
در این مقاله پارامترهای توزیع بور نوع سوم نمایی تحت داده های سانسوریده نوع دوم با روش ماکسیمم درستنمایی با الگوریتم امید میانگین و با رهیافت بیزی با در نظر گرفتن توزیع پیشین گاما و توابع زیان توان دوم خطا، لاینکس و آنتروپی برآورد شده اند. از روش نمونه گیری از نقاط مهم و تقریب لیندلی برای تقریب برآوردهای بیزی استفاده شده و برآوردگر بیزی حاصل با برآوردگر ماکسیمم درستنمایی مقایسه شده است. نتایج به کمک مطالعه شبیه سازی و تحلیل داده های واقعی مربوط به بیماری سرطان گلبول های سفید بررسی شده است. در حالت کلی برآوردگر بیزی بهتر از برآوردگر ماکسیمم درستنمایی عمل می کند و برآورد پارامترها با افزایش حجم نمونه بهتر می شود
فاطمه حسینی، الهام همایون فال، جلد 10، شماره 2 - ( 12-1395 )
چکیده
برای مدل بندی پاسخ های فضایی که در طول زمان مشاهده می شوند گاهی از مدل های سلسله مراتبی فضایی- زمانی استفاده می شود که در آن ساختار همبستگی فضایی –زمانی داده ها توسط یک میدان تصادفی پنهان گاوسی با تابع کوواریانس فضایی ماترن در نظر گرفته میشود. یکی از اهداف مهم در بررسی این مدلها برآورد پارامترها و متغیرهای پنهان و پیشگویی پاسخ ها در زمان های معلوم و موقعیت های معلوم فاقد مشاهده است. در این مقاله برای تحلیل این مدلها، ابتدا رهیافت بیزی معمولی ارائه می شود. به دلیل پیچیدگی توزیع های پسین و توزیع های شرطی کامل این مدل ها و استفاده از نمونه های مونت کارلویی در تحلیل بیزی معمولی، زمان محاسبات بسیار طولانی است. برای رفع این مشکل میدان تصادفی پنهان گاوسی با تابع کوواریانس ماترن، به صورت یک میدان تصادفی مارکوفی گاوسی در نظر گرفته میشود. برای تولید داده از این میدان تصادفی مارکوفی گاوسی از رهیافت معادلات دیفرانسیل جزیی تصادفی می توان استفاده کرد. سپس از روش بیز تقریبی و تقریب لاپلاس آشیانی جمع بسته برای به دست آوردن یک تقریب دقیق از توزیعهای پسین و استنباطها پیرامون مدل استفاده میشود. در نهایت در این مقاله یک مجموعه داده واقعی مربوط به میزان بارندگی استان سمنان در سال 1391، اندازه گیری شده در ایستگاه های هواشناسی این استان با مدل و روش های ارائه شده مورد مطالعه قرار می گیرد.
شهرام منصوری، جلد 10، شماره 2 - ( 12-1395 )
چکیده
در بین تمام توزیعهای آماری توزیع نرمال استاندارد مهمترین و کاربردیترین توزیع آماری بوده و محاسبه سطح زیر منحنی چگالی و تابع توزیع آن مورد نیاز است. ضابطه این تابع بهصورت یک انتگرال معین بیان میشود، ولی متاسفانه تابع اولیه آن دارای شکل بسته و تحلیلی نیست، لذا باید آن را تقریب زد. در این مقاله رابطه تقریبی سرگئی وینزکی با یک روش جدید اثبات میشود، سپس این تقریب با تغییراتی در رابطه آن بهبود داده و نشان میدهیم حداکثر مقدار خطای آن کمتر از 0000584/0 است. در انتها رابطهای نیز برای محاسبه صدکهای توزیع نرمال بهدست آورده میشود.
ابوذر بازیاری، جلد 11، شماره 1 - ( 6-1396 )
چکیده
مدل مخاطره جمعی شرکت بیمه با سرمایه اولیه ثابت وقتی فرآیند تعداد خسارتهای رخداده شده از طرف بیمهگذاران در یک بازه زمانی مشخص دارای توزیع پواسن با نرخ ثابت باشد، در نظر گرفته شده است. برای محاسبه احتمال ورشکستگی زمان نامتناهی از مفاهیم فرآیندهای تصادفی و معادلات دیفرانسیل استفاده میشود. همچنین یک فرمول صریح برای تعیین تقریب لاندبرگ در یافتن تقریبی احتمال ورشکستگی زمان نامتناهی بر حسب تابع توزیع متغیرهای تصادفی تعداد خسارتهای بیمهگذاران بهدست آمده است. با مثالهای عددی نتایج بهدست آمده مورد بررسی قرار گرفتهاند و نشان داده شده که برای هر مقدار سرمایه اولیه، تقریب احتمال ورشکستگی محاسبه شده در این مقاله، نسبت به تقریبهای بهدست آمده برای احتمالات ورشکستگی توسط دیگر نویسندگان به مقدار واقعی آن نزدیکتر و خطای آن کمتر است.
اکرم کهن سال، نفیسه آل محمد، فاطمه عزیززاده، جلد 14، شماره 2 - ( 12-1399 )
چکیده
برآورد بیزی پارامتر تنش-مقاومت، در توزیع لوماکس، تحت نمونههای سانسور فزاینده پیوندی در سه حالت بررسی میشود. اول، با فرض اینکه تنش و مقاومت دو متغیر تصادفی با پارامترهای مقیاس مشترک و شکل متفاوت هستند، برآورد بیزی پارامتر تنش-مقاومت با دو روش لیندلی و الگوریتم گیبز تقریب زده میشود. دوم، با فرض اینکه پارامتر مقیاس مشترک معلوم است، برآورد بیزی دقیق پارامتر تنش-مقاومت بهدست آمده است. سوم، با فرض اینکه همه پارامترها متفاوت و نامعلوم هستند، برآورد بیزی پارامتر تنش-مقاومت با الگوریتم گیبز بهدست میآید. همچنین، برآوردگرهای ماکسیمم درستنمایی محاسبه و سودمندی برآوردگرهای بیز در مقایسه با آنها، تائید شدهاند. در نهایت، با استفاده از شبیهسازی مونت کارلو، روشهای مختلف ارزیابی شده و یک مجموعه داده واقعی تحلیل میشود.
نگار اقبال، حسین باغیشنی، جلد 14، شماره 2 - ( 12-1399 )
چکیده
دادههای شمارشی زمینآماری در جوامع متناهی در کاربردهای مختلفی، مثل مدیریت شهری و پزشکی، دیده میشوند. مدل معمول برای تحلیل این نوع پاسخها، مدل لوجیت-دوجملهای فضایی است. در اکثر موقعیتهای کاربردی، این نوع دادهها جدا از تغییرپذیری فضایی دارای بیشپراکندگی هستند که مدل دوجملهای توانایی مدلبندی آن را ندارد. رهیافت جانشین در این حالت، یک مدل بتا-دوجملهای است که از انعطاف لازم برای لحاظ کردن بیشپراکنشی موجود در دادهها برخوردار است. در این مقاله، ابتدا برازش مدل بتا-دوجملهای فضایی برای دادههای شمارشی زمینآماری با یک رهیافت بیزی ترکیبی مبتنی بر تقریب لاپلاس آشیانی جمعبسته و معادلات دیفرانسیل جزیی تصادفی توصیف میشود. سپس این مدل، در یک مطالعه موردی، برای تحلیل تعداد تصادفهای منجر به جرح یا فوت در شهر مشهد بهکار گرفته میشود. همچنین با یک مطالعه شبیهسازی، عملکرد مدل پیشنهادی ارزیابی میشود.
علی محمدیان مصمم، الناز عباسی، خورخه متیو، جلد 16، شماره 2 - ( 12-1401 )
چکیده
در تحلیل بیزی دادههای فضایی-زمانی جرم و جنایت معمولاً به دلیل ناگاوسی بودن توزیع متغیر پاسخ و وجود تعداد زیادی متغیر پنهان در مدل تحت بررسی شکل بستهای برای توزیع پسینی وجود ندارد. در این شرایط در استفاده از روشهای مونتکارلوی زنجیر مارکوفی با چالشهایی نظیر وجود پارامترهای متعدد در ساختار سلسلهمراتبی، محاسبات سنگین و زمانبر، انجام شبیهسازی گسترده، بهویژه زمانی که بعد میدان تصادفی بزرگ است و سرانجام عدم همگرایی توزیع پسینی مواجه میشویم. برای حل این مشکلات روش تقریب لاپلاس آشیانی جمعبسته پیشنهاد شده است. مزیت این روش این است که برآوردهایی از منظر وقوع جرم وجنایت در مکان و زمان معین ارائه کرده و همچنین نواحی با رفتار غیرمعمول را تشخیص میدهد. در این مقاله با استفاده همزمان از GIS و روش قریب لاپلاس آشیانی جمعبسته در یک مطالعه موردی به تحلیل دادههای جرم و جنایت بخشی از کشور کلمبیا میپردازیم.
فاطمه حسینی، امید کریمی، جلد 18، شماره 1 - ( 6-1403 )
چکیده
برای مدلبندی دادههای رستهای فضایی از مدلهای آمیخته خطی تعمیمیافته فضایی استفاده میشود که در این مدلها اغلب متغیرهای پنهان که بیانگر همبستگی فضایی هستند، با یک میدان تصادفی گاوسی مدلبندی میشوند. عدم برقراری فرض گاوسی باعث تاثیر روی دقت پیشگوییها و برآورد پارامترهای مدل میشود. در این مقاله با استفاده یک میدان تصادفی چوله گاوسی مانا و بهکارگیری یک رهیافت بیزی تقریبی، مدلهای آمیخته خطی تعمیمیافته فضایی مدلبندی و برآورد میشوند. در یک مثال شبیهسازی کارایی مدل و رهیافت بیزی تقریبی بررسی و بر روی یک مثال واقعی پیادهسازی میشود.
علیرضا بهشتی، حسین باغیشنی، محمدحسن بهزادی، غلامحسین یاری، دنیل تورک، جلد 19، شماره 1 - ( 6-1404 )
چکیده
دادههای حاصل از اندازهگیری شاخصهای مالی و اقتصادی، مانند قیمت مسکن، عموما بهطور فضایی همبسته و ناهمگن هستند. مدلهای اقتصادسنجی فضایی برای لحاظ کردن وابستگی موجود در این دادهها پرطرفدار هستند. اما مدلبندی کارای ناهمگنی فضایی هنوز مورد سوال است. معمولا از رگرسیون وزنی جغرافیایی برای مدلبندی ناهمگنی موضعی دادههای فضایی استفاده میشود. این رده از مدلها برای دادههای فضایی همگن در چند زیرناحیه، بیش از حد پیچیده هستند. در این مقاله، از یک رهیافت مبتنی بر خوشهبندی فضایی برای شناسایی زیرنواحی همگن استفاده میشود. سپس، در هر زیرناحیه، مدلهای اقتصادسنجی فضایی بیزی به دادهها برازش داده میشوند. با توجه به پیچیدگی توزیع پسین مدلهای پیشنهادی و دوری از مشکلات الگوریتمهای MCMC، از روش تقریب لاپلاس آشیانهای جمعبسته استفاده میشود. آنگاه در یک مطالعه شبیهسازی، عملکرد رهیافت پیشنهادی ارزیابی و نحوه کاربست رهیافت دومرحلهای پیشنهادی برای تحلیل دادههای قیمت مسکن در شهر مشهد ارائه خواهد شد.
عادله فلاح، جلد 19، شماره 1 - ( 6-1404 )
چکیده
در این مقاله، برآوردیابی برای پارامتر توزیع لیندلی اصلاح شده بر اساس دادههای سانسور شده فزاینده نوع دو مورد مطالعه قرار گرفته است. برآورد ماکسیمم درستنمایی، برآورد به روش محوری و برآورد بیزی پارامتر با دو روش تقریب لیندلی و مونت کارلو زنجیر مارکوف محاسبه شده است. بازههای اطمینان مجانبی، محوری، بوت استرپ و بیزی ارائه شده است. یک مطالعه شبیهسازی مونت کارلو برای ارزیابی و مقایسه عملکرد روشهای مختلف برآورد انجام شده است. همچنین، برای تشریح بیشتر روشهای برآورد معرفی شده دو مثال واقعی ارائه شده است.
|
|
|
|
|
|
|