|
|
|
 |
جستجو در مقالات منتشر شده |
 |
|
3 نتیجه برای انتخاب مدل
عبدالرضا سیاره، جلد 4، شماره 2 - ( 12-1389 )
چکیده
یکی از مسایل اساسی در استنباط آماری انتخاب مدل بهینه از میان مدل های رقیب است. در این مقاله ثابت شده است که خطای نسبی بین دو مدل دارای خاصیت زبرجمعی است و با استفاده از آن نشان داده شده است که ترکیب محدب مدل های رقیب از نظر معیار واگرایی کولبک - لیبلر مدلی را ایجاد می کند که یا بهتر از تمام مدل های رقیب است و یا لااقل از دورترین مدل رقیب به مدل درست داده ها بهتر است بررسی شبیه سازی یافته های نظری را تایید می کنند
قباد برمال زن، عبدالرضا سیاره، جلد 4، شماره 2 - ( 12-1389 )
چکیده
در تحلیل های آماری با یک نمونه تصادفی از یک جامعه با چگالی درست و نامعلوم روبرو هستیم. معمولا مدلی پارامتری به عنوان تقریبی از این چگالی در نظر گرفته می شود و استنباط براساس آن صورت می گیرد. به طور بدیهی مبایست چگالی پارامتری به چگالی درست نزدیک باشدتا به استنباط معتبر در مورد جامعه دست یافته شود. پیشنهاد یک مدل قطعی براساس تعداد محدودی از مشاهدات به عنوان تقریب یا برآوردی از چگالی درست موجب بروز ریسک بزرگی در انتخاب مدل برای جامعه خواهد شد. به همین دلیل چند مدل غیرآشیانی انتخاب و بررسی می شود که کدام مدل به چگالی درست داده ها نزدیک تر است . در این مقاله به بررسی این سوال اساسی در انتخاب مدل پرداخته شده است که چگونه می توان مجموعه ای از مدل های مناسب را برای چگالی درست به دست آورد. روشی پیشنهاد می شود تا نشان داده شود که براساس ریسک کولبک -لیبلر در هر خانواده از مدل های رقیب کدام یک از چگالی ها از لحاظ نزدیکی به چگالی درست معادل هستند . مجموعه تمام عضوهای این خانواده که از لحاظ نزدیکی به چگالی درست معادل هستند مجموعه مجاز نامیده می شود.
صدیقه اسحقی، حسین باغیشنی، نگار اقبال، جلد 12، شماره 1 - ( 6-1397 )
چکیده
یک چالش اساسی در استنباط مدلهای آمیخته، معرفی معیارهای کارا برای انتخاب مدل است. منبع اصلی این چالش نیز برازش و محاسبه ماکسیمم تابع درستنمایی مدل میباشد. داده تاگی روش جدیدی است که برای برازش کارای مدلهای آمیخته با روش ماکسیمم درستنمایی پیشنهاد شده است. این روش، اخیرا، طرفداران زیادی پیدا کرده است و مشکلات عمده سایر روشهای استنباط مبتنی بر درستنمایی در مدلهای آمیخته را ندارد. یکی از معایب این روش، عدم توانایی محاسبه مقدار ماکسیمم تابع درستنمایی است. این مقدار یک کمیت کلیدی در معرفی و محاسبه معیارهای انتخاب مدل محسوب میشود. بنابراین بهنظر میرسد با روش داده تاگی نمیتوان یک معیار اطلاع مناسب، بهطور مستقیم، برای یافتن بهترین مدل در رده مدلهای آمیخته، تعریف کرد. این پژوهش تلاشی است در جهت نقض این باور. در این مقاله، یک معیار مبتنی بر روش داده تاگی معرفی میشود و عملکرد آن در یک مطالعه شبیهسازی مورد ارزیابی قرار میگیرد.
|
|
|
|
|
|
|