[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 1 results for Splitting Method

Dr Alireza Chaji,
Volume 16, Issue 2 (3-2023)
Abstract

High interpretability and ease of understanding decision trees have made
them one of the most widely used machine learning algorithms. The key to building
efficient and effective decision trees is to use the suitable splitting method. This
paper proposes a new splitting approach to produce a tree based on the T-entropy criterion
for the splitting method. The method presented on three data sets is examined
by 11 evaluation criteria. The results show that the introduced method in making
the decision tree has a more accurate performance than the well-known methods of
Gini index, Shannon, Tisalis, and Renny entropies and can be used as an alternative
method in producing the decision tree.

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.05 seconds with 33 queries by YEKTAWEB 4710