[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Stochastic Partial Differential Equations

Fatemeh Hosseini, Elham Homayonfal,
Volume 10, Issue 2 (2-2017)
Abstract

Hierarchical spatio-temporal models are used for modeling space-time responses and temporally and spatially correlations of the data is considered via Gaussian latent random field with Matérn covariance function. The most important interest in these models is estimation of the model parameters and the latent variables, and is predict of the response variables at new locations and times. In this paper, to analyze these models, the Bayesian approach is presented. Because of the complexity of the posterior distributions and the full conditional distributions of these models and the use of Monte Carlo samples in a Bayesian analysis, the computation time is too long. For solving this problem, Gaussian latent random field with Matern covariance function are represented as a Gaussian Markov Random Field (GMRF) through the Stochastic Partial Differential Equations (SPDE) approach. Approximatin Baysian method and Integrated Nested Laplace Approximation (INLA) are used to obtain an approximation of the posterior distributions and to inference about the model. Finally, the presented methods are applied to a case study on rainfall data observed in the weather stations of Semnan in 2013.


Negar Eghbal, Hossein Baghishani,
Volume 14, Issue 2 (2-2021)
Abstract

Geostatistical spatial count data in finite populations can be seen in many applications, such as urban management and medicine. The traditional model for analyzing these data is the spatial logit-binomial model. In the most applied situations, these data have overdispersion alongside the spatial variability. The binomial model is not the appropriate candidate to account for the overdispersion. The proper alternative is a beta-binomial model that has sufficient flexibility to account for the extra variability due to the possible overdispersion of counts. In this paper, we describe a Bayesian spatial beta-binomial for geostatistical count data by using a combination of the integrated nested Laplace approximation and the stochastic partial differential equations methods. We apply the methodology for analyzing the number of people injured/killed in car crashes in Mashhad, Iran. We further evaluate the performance of the model using a simulation study.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 34 queries by YEKTAWEB 4710