[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 5 results for Spline

Behzad Mahmoudian, Mousa Golalizadeh,
Volume 3, Issue 1 (9-2009)
Abstract

Modeling of extreme responses in presence nonlinear, temporal, spatial and interaction effects can be accomplished with mixed models. In addition, smoothing spline through mixed model and Bayesian approach together provide convenient framework for inference of extreme values. In this article, by representing as a mixed model, smoothing spline is used to assess nonlinear covariate effect on extreme values. For this reason, we assume that extreme responses given covariates and random effects are independent with generalized extreme value distribution. Then by using MCMC techniques in Bayesian framework, location parameter of distribution is estimated as a smooth function of covariates. Finally, the proposed model is employed to model the extreme values of ozone data.
Jalal Chachi, Gholamreza Hesamian,
Volume 8, Issue 1 (9-2014)
Abstract

In this paper, we deal with modeling crisp input-fuzzy output data by constructing a MARS-fuzzy regression model with crisp parameters estimation and fuzzy error terms for the fuzzy data set. The proposed method is a two-phase procedure which applies the MARS technique at phase one and an optimization problem at phase two to estimate the center and fuzziness of the response variable. A realistic application of the proposed method is also presented in a hydrology engineering problem. Empirical results demonstrate that the proposed approach is more efficient and more realistic than some traditional least-squares fuzzy regression models.

Shahram Mansoury,
Volume 9, Issue 1 (9-2015)
Abstract

Jaynes' principle of maximum entropy states that among all the probability distributions satisfying some constraints, one should be selected which has maximum uncertainty. In this paper, we consider the methods of obtaining maximum entropy bivariate density functions via Taneja and Burg's measure of entropy under the constraints that the marginal distributions and correlation coefficient are prescribed. Next, a numerical method is considered. Finally, each method is illustrated via a numerical example.

Meysam Tasallizadeh Khemes, Zahra Rezaei Ghahroodi,
Volume 11, Issue 2 (3-2018)
Abstract

There are several methods for clustering time course gene expression data. But, these methods have limitations such as the lack of consideration of correlation over time and suffering of high computational. In this paper, by introducing the non-parametric and semi parametric mixed effects model, this correlation over time is considered and by using penalized splines, computation burden dramatically reduced. At the end, using a simulation study the performance of the presented method is compared with previous methods and by using BIC criteria, the most appropriate model is selected. Also the proposed approach is illustrated in a real time course gene expression data set.


Mozhgan Taavoni, Mohammad Arashi,
Volume 14, Issue 2 (2-2021)
Abstract

This paper considers the problem of simultaneous variable selection and estimation in a semiparametric mixed-effects model for longitudinal data with normal errors. We approximate the nonparametric function by regression spline and simultaneously estimate and select the variables under the optimization of the penalized objective function. Under some regularity conditions, the asymptotic behaviour of the resulting estimators is established in a high-dimensional framework where the number of parametric covariates increases as the sample size increases. For practical implementation, we use an EM algorithm to selects the significant variables and estimates the nonzero coefficient functions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed to illustrate the proposed procedure. 


Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.09 seconds with 35 queries by YEKTAWEB 4704