[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 3 results for Proportional Hazard Rate Model

Nahid Sanjari Farsipour, Hajar Riyahi,
Volume 7, Issue 2 (3-2014)
Abstract

In this paper the likelihood and Bayesian inference of the stress-strength reliability are considered based on record values from proportional and proportional reversed hazard rate models. Then inference of the stress-strength reliability based on lower record values from some generalized distributions are also considered. Next the likelihood and Bayesian inference of the stress-strength model based on upper record values from Gompertz, Burr type XII, Lomax and Weibull distributions are considered. The ML estimators and their properties are studied. Likelihood-based confidence intervals, exact, as well as the Bayesian credible sets and bootstrap interval for the stress-strength reliability in all distributions are obtained. Simulation studies are conducted to investigate and compare the performance of the intervals.

Nader Nematollahi,
Volume 10, Issue 2 (2-2017)
Abstract

In some applied problems we need to choose a population from the given populations and estimate the parameter of the selected population. Suppose k random samples are chosen from k populations with proportional hazard rate model or proportional reversed hazard rate model. According to a specified selection rule, it is desired to estimate the parameter of the best (worst) selected population. In this paper, under the entropy loss function we obtain the  uniformly minimum risk unbiased (UMRU) estimator of  the parameters of the selected population, and derived sufficient conditions for minimaxity of a given estimator. Then we find the class of admissible and inadmissible linear estimators of the parameters of the selected population and determine the class of dominators of a given estimator. We show that the UMRU estimator is inadmissible and compare the obtained estimators by plotting their risk functions.


Ghobad Barmalzan,
Volume 13, Issue 1 (9-2019)
Abstract

‎In this paper‎, ‎under certain conditions‎, ‎the usual stochastic‎, ‎convex and dispersive orders between the smallest claim amounts with independent Weibull claims are discussed‎. ‎Also‎, ‎under conditions on some well-known common copula‎, ‎some stochastic comparisons of smallest claim amounts with dependent heterogeneous claims have been obtained‎.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.09 seconds with 35 queries by YEKTAWEB 4704