[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Official Statistics.

Zahra Rezaei Ghahroodi, Hasan Ranji, Alireza Rezaei,
Volume 15, Issue 1 (9-2021)
Abstract

In most surveys, the occupation and job-industry related questions are asked through open-ended questions, and the coding of this information into thousands of categories is done manually. This is very time consuming and costly. Given the requirement of modernizing the statistical system of countries, it is necessary to use statistical learning methods in official statistics for primary and secondary data analysis. Statistical learning classification methods are also useful in the process of producing official statistics. The purpose of this article is to code some statistical processes using statistical learning methods and familiarize executive managers about the possibility of using statistical learning methods in the production of official statistics. Two applications of classification statistical learning methods, including automatic coding of economic activities and open-ended coding of statistical centers questionnaires using four iterative methods, are investigated. The studied methods include duplication, support vector machine (SVM) with multi-level aggregation methods, a combination of the duplication method and SVM, and the nearest neighbor method. 

Dr Zahra Rezaei Ghahroodi, Zhina Aghamohamadi,
Volume 16, Issue 1 (9-2022)
Abstract

With the advent of big data in the last two decades, in order to exploit and use this type of data, the need to integrate databases for building a stronger evidence base for policy and service development is felt more than ever. Therefore, familiarity with the methodology of data linkage as one of the methods of data integration and the use of machine learning methods to facilitate the process of recording records is essential. In this paper, in addition to introducing the record linkage process and some related methods, machine learning algorithms are required to increase the speed of database integration, reduce costs and improve record linkage performance. In this paper, two databases of the Statistical Center of Iran and Social Security Organization are linked.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.2 seconds with 34 queries by YEKTAWEB 4710