|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Model-Based Clustering
Mousa Golalizadeh, Sedigheh Noorani, Volume 16, Issue 1 (9-2022)
Abstract
Nowadays, the observations in many scientific fields, including biological sciences, are often high dimensional, meaning the number of variables exceeds the number of samples. One of the problems in model-based clustering of these data types is the estimation of too many parameters. To overcome this problem, the dimension of data must be first reduced before clustering, which can be done through dimension reduction methods. In this context, a recent approach that is recently receiving more attention is the random Projections method. This method has been studied from theoretical and practical perspectives in this paper. Its superiority over some conventional approaches such as principal component analysis and variable selection method was shown in analyzing three real data sets.
Mozhgan Moradi, Shaho Zarei, Volume 18, Issue 1 (8-2024)
Abstract
Model-based clustering is the most widely used statistical clustering method, in which heterogeneous data are divided into homogeneous groups using inference based on mixture models. The presence of measurement error in the data can reduce the quality of clustering and, for example, cause overfitting and produce spurious clusters. To solve this problem, model-based clustering assuming a normal distribution for measurement errors has been introduced. However, too large or too small (outlier) values of measurement errors cause poor performance of existing clustering methods. To tackle this problem {and build a stable model against the presence of outlier measurement errors in the data}, in this article, a symmetric $alpha$-stable distribution is proposed as a replacement for the normal distribution for measurement errors, and the model parameters are estimated using the EM algorithm and numerical methods. Through simulation and real data analysis, the new model is compared with the MCLUST-based model, considering cases with and without measurement errors, and the performance of the proposed model for data clustering in the presence of various outlier measurement errors is shown.
|
|
|
|
|
|
|