[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 1 results for Mean Shift Method

Abdolrahman Rasekh, Behzad Mansouri, Narges Hedayatpoor,
Volume 13, Issue 1 (9-2019)
Abstract

The study of regression diagnostic, including identification of the influential observations and outliers, is of particular importance. The sensitivity of least squares estimators to the outliers and influential observations lead to extending the regression diagnostic in order to provide criteria to assess the anomalous observations. Detecting influential observations and outliers in the presence of collinearity is a complicated task, in the sense that collinearity may cover some of the unusual data. One of the considerable methods to identify outliers is the mean shift outliers method. In this article, we extend the mean shift outliers method to the ridge estimates under linear stochastic restrictions, which is used to reduce the effect of collinearity, and to provide the test statistic to identify the outliers in these estimators. Finally, we show the ability of our proposed method using a practical example of real data.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.04 seconds with 33 queries by YEKTAWEB 4712