|
|
|
 |
Search published articles |
 |
|
Showing 3 results for Markov Chain Monte Carlo
Kobra Gholizadeh, Mohsen Mohammadzadeh, Zahra Ghayyomi, Volume 7, Issue 1 (9-2013)
Abstract
In Bayesian analysis of structured additive regression models which are a flexible class of statistical models, the posterior distributions are not available in a closed form, so Markov chain Monte Carlo algorithm due to complexity and large number of hyperparameters takes long time. Integrated nested Laplace approximation method can avoid the hard simulations using the Gaussian and Laplace approximations. In this paper, consideration of spatial correlation of the data in structured additive regression model and its estimation by the integrated nested Laplace approximation are studied. Then a crime data set in Tehran city are modeled and evaluated. Next, a simulation study is performed to compare the computational time and precision of the models provided by the integrated nested Laplace approximation and Markov chain Monte Carlo algorithm
Bahram Haji Joudaki, Reza Hashemi, Soliman Khazaei, Volume 17, Issue 2 (2-2024)
Abstract
In this paper, a new Dirichlet process mixture model with the generalized inverse Weibull distribution as the kernel is proposed. After determining the prior distribution of the parameters in the proposed model, Markov Chain Monte Carlo methods were applied to generate a sample from the posterior distribution of the parameters. The performance of the presented model is illustrated by analyzing real and simulated data sets, in which some data are right-censored. Another potential of the proposed model demonstrated for data clustering. Obtained results indicate the acceptable performance of the introduced model.
Dr Adeleh Fallah, Volume 19, Issue 1 (9-2025)
Abstract
In this paper, estimation for the modified Lindley distribution parameter is studied based on progressive Type II censored data. Maximum likelihood estimation, Pivotal estimation, and Bayesian estimation were calculated using the Lindley approximation and Markov chain Monte Carlo methods. Asymptotic, Pivotal, bootstrap, and Bayesian confidence intervals are provided. A Monte Carlo simulation study has been conducted to evaluate and compare the performance of different estimation methods. To further illustrate the introduced estimation methods, two real examples are provided.
|
|
|
|
|
|
|