[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Interpolation

Azadeh Mojiri, Yadolla Waghei, Hamid Reza Nili Sani, Gholam Reza Mohtashami Borzadaran,
Volume 12, Issue 1 (9-2018)
Abstract

Prediction of spatial variability is one of the most important issues in the analysis of spatial data. So predictions are usually made by assuming that the data follow a spatial model. In General, the spatial models are the spatial autoregressive (SAR), the conditional autoregressive and the moving average models. In this paper, we estimated parameter of SAR(2,1) model by using maximum likelihood and obtained formulas for predicting in SAR models, including the prediction within the data (interpolation) and outside the data (extrapolation). Finally, we evaluate the prediction methods by using image processing data.


Ronak Jamshidi, Sedigheh Shams,
Volume 13, Issue 2 (2-2020)
Abstract

In this paper‎, ‎a family of copula functions called chi-square copula family is used for modeling the dependency structure of stationary and isotropic spatial random fields‎. ‎The dependence structure of this copula is such that‎, ‎it generalizes the Gaussian copula and flexible for modeling for high-dimensional random vectors and unlike Gaussian copula it allows for modeling of tail asymmetric dependence structures‎. ‎Since the density function of chi-square copula in high dimension has computational complexity‎, ‎therefore to estimate its parameters‎, ‎a composite pairwise likelihood method is used in which only bivariate density functions are used‎. ‎The purpose of this paper is to investigate the properties of the chi-square copula family‎, ‎estimating its parameters with the composite pairwise likelihood and its application in spatial interpolation.


Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 34 queries by YEKTAWEB 4713