|
|
|
 |
Search published articles |
 |
|
Showing 1 results for Industrial Establishment Survey
Mehrdad Ghaderi, Zahra Rezaei Ghahroodi, Mina Gandomi, Volume 19, Issue 1 (9-2025)
Abstract
Researchers often face the problem of how to address missing data. Multiple imputation by chained equations is one of the most common methods for imputation. In theory, any imputation model can be used to predict the missing values. However, if the predictive models are incorrect, it can lead to biased estimates and invalid inferences. One of the latest solutions for dealing with missing data is machine learning methods and the SuperMICE method. In this paper, We present a set of simulations indicating that this approach produces final parameter estimates with lower bias and better coverage than other commonly used imputation methods. Also, implementing some machine learning methods and an ensemble algorithm, SuperMICE, on the data of the Industrial establishment survey is discussed, in which the imputation of different variables in the data co-occurs. Also, the evaluation of various methods is discussed, and the method that has better performance than the other methods is introduced.
|
|
|
|
|
|
|