[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 3 results for Gompertz Distribution

Rasool Roozegar, Ali Akbar Jafari,
Volume 11, Issue 1 (9-2017)
Abstract

In this paper, we introduce a family of bivariate generalized Gompertz-power series distributions. This new class of bivariate distributions contains several models such as: bivariate generalized Gompertz -geometric, -Poisson, - binomial, -logarithmic, -negative binomial and bivariate generalized exponental-power series distributions as special cases. We express the method of construction and derive different properties of the proposed class of distributions. The method of maximum likelihood and EM algorithm are used for estimating the model parameters. Finally, we illustrate the usefulness of the new distributions by means of application to real data sets.


Shahram Yaghoobzadeh Shahrastani,
Volume 12, Issue 1 (9-2018)
Abstract

In this paper, based on generalized order statistics the Bayesian and maximum liklihood estimations of the parameters, the reliability and the hazard functions of Gompertz distribution are investigated. Specializations to Bayesian and maximum liklihood estimators, some lifetime parameters of progressive II censoring and record values are obtained. Also by using two real data sets and simulated data accurations of different estimates of the parameters are compared. Next the Bayesian and maximum liklihood estimates of the Gompertz distribution are compared with Weibull and Lomax distrtibutions.


Fateme Sadat Mirsadooghi, Akram Kohansal,
Volume 17, Issue 2 (2-2024)
Abstract

‎In this paper, under adaptive hybrid progressive censoring samples, Bayes estimation of the multi-component reliability, with the non-identical-component strengths, in unit generalized Gompertz distribution is considered. This problem is solved in three cases. In the first case, strengths and stress variables are assumed to have unknown, uncommon parameters. In the second case,  it is assumed that strengths and stress variables have two common and one uncommon parameter, so all of these parameters are unknown. In the third case, it is assumed that strengths and stress variables have two known common parameters and one unknown uncommon parameter. In each of these cases, Bayes estimation of the multi-component reliability, with the non-identical-component strengths, is obtained with different methods. Finally, different estimations are compared using the Monte Carlo simulation, and the results are implemented on one real data set.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.17 seconds with 33 queries by YEKTAWEB 4704