|
|
|
 |
Search published articles |
 |
|
Showing 3 results for Gibbs Algorithm
Afshin Fallah, Ramin Kazemi, Hasan Khosravi, Volume 11, Issue 2 (3-2018)
Abstract
Regression analysis is done, traditionally, considering homogeneity and normality assumption for the response variable distribution. Whereas in many applications, observations indicate to a heterogeneous structure containing some sub-populations with skew-symmetric structure either due to heterogeneity, multimodality or skewness of the population or a combination of them. In this situations, one can use a mixture of skew-symmetric distributions to model the population. In this paper we considered the Bayesian approach of regression analysis under the assumption of heterogeneity of population and a skew-symmetric distribution for sub-populations, by using a mixture of skew normal distributions. We used a simulation study and a real world example to assess the proposed Bayesian methodology and to compare it with frequentist approach.
Zahra Khadem Bashiri, Ali Shadrokh, Masoud Yarmohammadi, Volume 15, Issue 1 (9-2021)
Abstract
One of the most critical discussions in regression models is the selection of the optimal model, by identifying critical explanatory variables and negligible variables and more easily express the relationship between the response variable and explanatory variables. Given the limitations of selecting variables in classical methods, such as stepwise selection, it is possible to use penalized regression methods. One of the penalized regression models is the Lasso regression model, in which it is assumed that errors follow a normal distribution. In this paper, we introduce the Bayesian Lasso regression model with an asymmetric distribution error and the high dimensional setting. Then, using the simulation studies and real data analysis, the performance of the proposed model's performance is discussed.
Firozeh Bastan, Seyed Mohamad Taghi Kamel Mirmostafaee, Volume 15, Issue 2 (3-2022)
Abstract
In this paper, estimation and prediction for the Poisson-exponential distribution are studied based on lower records and inter-record times. The estimation is performed with the help of maximum likelihood and Bayesian methods based on two symmetric and asymmetric loss functions. As it seems that the integrals of the Bayes estimates do not possess closed forms, the Metropolis-Hastings within Gibbs and importance sampling methods are applied to approximating these integrals. Moreover, the Bayesian prediction of future records is also investigated. A simulation study and an application example are presented to evaluate and show the applicability of the paper's results and also to compare the numerical results when the inference is based on records and inter-record times with those when the inference is based on records alone.
|
|
|
|
|
|
|