[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Generalized Linear Mixed Model

Sedighe Eshaghi, Hossein Baghishani, Negar Eghbal,
Volume 12, Issue 1 (9-2018)
Abstract

Introducing some efficient model selection criteria for mixed models is a substantial challenge; Its source is indeed fitting the model and computing the maximum likelihood estimates of the parameters. Data cloning is a new method to fit mixed models efficiently in a likelihood-based approach. This method has been popular recently and avoids the main problems of other likelihood-based methods in mixed models. A disadvantage of data cloning is its inability of computing the maximum of likelihood function of the model. This value is a key quantity in proposing and calculating information criteria. Therefore, it seems that we can not, directly, define an appropriate information criterion by data cloning approach. In this paper, this believe is broken and a criterion based on data cloning is introduced. The performance of the proposed model selection criterion is also evaluated by a simulation study.


Fatemeh Hosseini, Omid Karimi,
Volume 18, Issue 1 (8-2024)
Abstract

The spatial generalized linear mixed models are often used, where the latent variables representing spatial correlations are modeled through a Gaussian random field to model the categorical spatial data. The violation of the Gaussian assumption affects the accuracy of predictions and parameter estimates in these models. In this paper, the spatial generalized linear mixed models are fitted and analyzed by utilizing a stationary skew Gaussian random field and employing an approximate Bayesian approach. The performance of the model and the approximate Bayesian approach is examined through a simulation example, and implementation on an actual data set is presented.

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.04 seconds with 34 queries by YEKTAWEB 4714