[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 3 results for Empirical Bayes

Firouzeh Rivaz, Mohsen Mohammadzadeh, Majid Jafari Khaledi,
Volume 1, Issue 1 (9-2007)
Abstract

In Bayesian prediction of a Gaussian space-time model, unknown parameters are considered as random variables with known prior distributions and, then the posterior and Bayesian predictive distributions are approximated with discritization method. Since prior distributions are often unknown, in this paper, parametric priors are considered. Then the empirical Bayes approach is used to estimate the prior distributions. Replacing these estimates in the Bayesian predictive distribution, an empirical Bayes space-time predictor and prediction variance are determined. Then an environmental example is used to illustrate the application of the proposed method. Finally the accuracy of the empirical Bayes space-time predictor is considered with cross validation criterion.
Ehsan Golzade Gervi, Parviz Nasiri, Mahdi Salehi,
Volume 15, Issue 1 (9-2021)
Abstract

The empirical Bayes estimation of the exponential distribution parameter under squared error and LINEX loss functions is investigated when the record collects the data ranked set sampling scheme method. Then, point and interval predictions for future record values are studied. The results of this sampling scheme are compared with the products of the inverse sampling scheme. To compare the accuracy of estimators, Bayes risk and posterior risk criteria are used. These point predictors are compared in the sense of their mean squared prediction errors. To evaluate the prediction intervals for both the sampling schemes, the average interval length and coverage probability are computed and compared. In the present study, the hyperparameters are estimated in two methods. By studying the simulation and presenting real data, the estimation methods are compared, and the performance of the introduced schemes is evaluated.

Shaho Zarei,
Volume 15, Issue 2 (3-2022)
Abstract

The most widely used model in small area estimation is the area level or the Fay-Herriot model. In this model, it is typically assumed that both the area level random effects (model errors) and the sampling errors have a Gaussian distribution.  However, considerable variations in error components (model errors and sampling errors) can cause poor performance in small area estimation. In this paper, to overcome this problem, the symmetric α-stable distribution is used to deal with outliers in the error components. The model parameters are estimated with the empirical Bayes method. The performance of the proposed model is investigated in different simulation scenarios and compared with the existing classic and robust empirical Bayes methods. The proposed model can improve estimation results, in particular when both error components are normal or have heavy-tailed distribution.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.1 seconds with 35 queries by YEKTAWEB 4704