|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Convex Order
Ghobad Barmalzan, Abedin Haidari, Maryam Abdollahzade, Volume 6, Issue 2 (2-2013)
Abstract
Suppose there are two groups of independent exponential random variables, where the first group has different hazard rates and the second group has common hazard rate. In this paper, the various stochastic orderings between their sample spacings have studied and introduced some necessary and sufficient conditions to equivalence of these stochastic ordering. Also, for the special case of sample size two, it is shown that the hazard rate function of the second sample spacing is Shcur-concave in the inverse vector of parameters.
Ebrahim Amini-Seresht, Majid Sadeghifar, Mona Shiri, Volume 12, Issue 1 (9-2018)
Abstract
In this paper, we further investigate stochastic comparisons of the lifetime of parallel systems with heterogeneous independent Pareto components in term of the star order and convex order. It will be proved that the lifetime of a parallel system with heterogeneous independent components from Pareto model is always smaller than from the lifetime of another parallel system with homogeneous independent components from Pareto model in the sense of convex order. Also, under a general condition on the scale parameters, it is proved a result involving with star order.
|
|
|
|
|
|
|