[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Change Point

Arezu Rahmanpour, Yadollah Waghei, Gholam Reza Mohtashami Borzadaran,
Volume 19, Issue 1 (9-2025)
Abstract

Change point detection is one of the most challenging statistical problems because the number and position of these points are unknown. In this article, we will first introduce the concept of change point and then obtain the parameter estimation of the first-order autoregressive model AR(1); in order to investigate the precision of estimated parameters, we have done a simulation study. The precision and consistency of parameters were evaluated using MSE. The simulation study shows that parameter estimation is consistent. In the sense that as the sample size increases, the MSE of different parameters converges to zero. Next, the AR(1) model with the change point was fitted to Iran's annual inflation rate data (from 1944 to 2022), and the inflation rate in 2023  and 2024 was predicted using it.
Zohreh Nakhaeezadeh, Sarah Jomhoori, Fatemeh Yousefzadeh,
Volume 19, Issue 2 (4-2025)
Abstract

Integer-valued time series models play an essential role in the analysis of dependent count data. One of the main challenges in these models is to detect structural changes over time. These changes may be caused by sudden interventions such as policy changes, pandemics, or system failures. In this paper, the empirical likelihood method is used to detect structural changes in a class of INAR(1) processes. This method is a tool for early warning of structural changes in these processes. Using simulation, the empirical sizes and powers of the test are calculated for different sample sizes, and the test's performance is investigated. Finally, the practical efficiency of the test is investigated by identifying the change point in two real datasets: the number of robberies and the number of COVID-19 deaths.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.11 seconds with 34 queries by YEKTAWEB 4722