|
|
|
 |
Search published articles |
 |
|
Showing 5 results for Bayesian Estimation
Ali Shadrokh, Shahram Yaghoobzadeh Shahrastani, Volume 13, Issue 2 (2-2020)
Abstract
In this study, the E-Bayesian and hierarchical Bayesian for stress-strength, when X and Y are two independent Rayleigh distributions with different parameters were estimated based on the LINEX loss function. These methods were compared with each other and with the Bayesian estimator using Monte Carlo simulation and two real data sets.
Shahram Yaghoobzadeh, Volume 14, Issue 1 (8-2020)
Abstract
In this study, the E-Bayesian estimation of the reliability parameter, R = P(Y < X < Z), when X, Y and Z are three independent inverse Rayleigh distribution with different parameters, were estimated based on ranked set sampling method. To assess the efficiency of the obtained estimates, we compute the average absolute bias and relative efficiency of the derived estimates and compare them with those based on the corresponding simple random sample through Monte Carlo simulations. Also, E-Bayesian estimation of R is compared with its maximum likelihood estimation in each method. Finally, three real data sets are used to analyze the estimation methods.
Reza Zarei, , Volume 14, Issue 2 (2-2021)
Abstract
In this paper, the Bayesian and empirical Bayesian approaches studied in estimate the multicomponent stress–strength reliability model when the strength and stress variables have a generalized Rayleigh distribution with different shape parameters and identical scale parameter. The Bayesian, empirical Bayesian and maximum likelihood estimation of reliability function is obtained in the two cases known and unknown of scale parameter under the mean squared error loss function. Then, these estimators are compared empirically using Monte Carlo simulation and two real data sets.
Fateme Sadat Mirsadooghi, Akram Kohansal, Volume 17, Issue 2 (2-2024)
Abstract
In this paper, under adaptive hybrid progressive censoring samples, Bayes estimation of the multi-component reliability, with the non-identical-component strengths, in unit generalized Gompertz distribution is considered. This problem is solved in three cases. In the first case, strengths and stress variables are assumed to have unknown, uncommon parameters. In the second case, it is assumed that strengths and stress variables have two common and one uncommon parameter, so all of these parameters are unknown. In the third case, it is assumed that strengths and stress variables have two known common parameters and one unknown uncommon parameter. In each of these cases, Bayes estimation of the multi-component reliability, with the non-identical-component strengths, is obtained with different methods. Finally, different estimations are compared using the Monte Carlo simulation, and the results are implemented on one real data set.
Shahram Yaghoobzadeh, Volume 19, Issue 2 (4-2025)
Abstract
Studying various models in queueing theory is essential for improving the efficiency of queueing systems. In this paper, from the family of models {E_r/M/c; r,c in N}, the E_r/M/3 model is introduced, and quantities such as the distribution of the number of customers in the system, the average number of customers in the queue and in the system, and the average waiting time in the queue and in the system for a single customer are obtained. Given the crucial role of the traffic intensity parameter in performance evaluation criteria of queueing systems, this parameter is estimated using Bayesian, E‑Bayesian, and hierarchical Bayesian methods under the general entropy loss function and based on the system’s stopping time. Furthermore, based on the E‑Bayesian estimator, a new estimator for the traffic intensity parameter is proposed, referred to in this paper as the E^2‑Bayesian estimator. Accordingly, among the Bayesian, E‑Bayesian, hierarchical Bayesian, and the new estimator, the one that minimizes the average waiting time in the customer queue is considered the optimal estimator for the traffic intensity parameter in this paper. Finally, through Monte Carlo simulation and using a real dataset, the superiority of the proposed estimator over the other mentioned estimators is demonstrated.
|
|