[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Bayesian Shrinkage Estimator

Azadeh Kiapour,
Volume 11, Issue 1 (9-2017)
Abstract

Usually, we estimate the unknown parameter by observing a random sample and using the usual methods of estimation such as maximum likelihood method. In some situations, we have information about the real parameter in the form of a guess. In these cases, one may shrink the maximum likelihood or other estimators towards a guess value and construct a shrinkage estimator. In this paper, we study the behavior of a Bayes shrinkage estimator for the scale parameter of exponential distribution based on censored samples under an asymmetric and scale invariant loss function. To do this, we propose a Bayes shrinkage estimator and compute the relative efficiency between this estimator and the best linear estimator within a subclass with respect to sample size, hyperparameters of the prior distribution and the vicinity of the guess and real parameter. Also, the obtained results are extended to Weibull and Rayleigh lifetime distributions.


Mehran Naghizadeh Qomi,
Volume 14, Issue 2 (2-2021)
Abstract

In classical statistics, the parameter of interest is estimated based on sample information and using natural estimators such as maximum likelihood estimators. In Bayesian statistics, the Bayesian estimators are constructed based on prior knowledge and combining with it sample information. But, in some situations, the researcher has information about the unknown parameter as a guess. Bayesian shrinkage estimators can be constructed by Combining this non-sample information with sample information together with the prior knowledge, which is in the area of semi-classical statistics. In this paper, we introduce a class of Bayesian shrinkage estimators for the Weibull scale parameter as a generalization of the estimator at hand and consider the bias and risk of them under LINEX loss function. Then, the proposed estimators are compared using a real data set. 


Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.03 seconds with 34 queries by YEKTAWEB 4710