|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Bayesian Shrinkage Estimator
Azadeh Kiapour, Volume 11, Issue 1 (9-2017)
Abstract
Usually, we estimate the unknown parameter by observing a random sample and using the usual methods of estimation such as maximum likelihood method. In some situations, we have information about the real parameter in the form of a guess. In these cases, one may shrink the maximum likelihood or other estimators towards a guess value and construct a shrinkage estimator. In this paper, we study the behavior of a Bayes shrinkage estimator for the scale parameter of exponential distribution based on censored samples under an asymmetric and scale invariant loss function. To do this, we propose a Bayes shrinkage estimator and compute the relative efficiency between this estimator and the best linear estimator within a subclass with respect to sample size, hyperparameters of the prior distribution and the vicinity of the guess and real parameter. Also, the obtained results are extended to Weibull and Rayleigh lifetime distributions.
Mehran Naghizadeh Qomi, Volume 14, Issue 2 (2-2021)
Abstract
In classical statistics, the parameter of interest is estimated based on sample information and using natural estimators such as maximum likelihood estimators. In Bayesian statistics, the Bayesian estimators are constructed based on prior knowledge and combining with it sample information. But, in some situations, the researcher has information about the unknown parameter as a guess. Bayesian shrinkage estimators can be constructed by Combining this non-sample information with sample information together with the prior knowledge, which is in the area of semi-classical statistics. In this paper, we introduce a class of Bayesian shrinkage estimators for the Weibull scale parameter as a generalization of the estimator at hand and consider the bias and risk of them under LINEX loss function. Then, the proposed estimators are compared using a real data set.
|
|
|
|
|
|
|