[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Accelerated Failure Time Model

Mojtaba Zeinali, Ehsan Bahrami Samani,
Volume 15, Issue 1 (9-2021)
Abstract

This article aims to joint modeling of longitudinal CD4 cells count and time to death in HIV patients based on the AFT model. The modeling of the longitudinal count response, a GLME model under the family of PSD, was used. In contrast, for the TTE data, the parametric AFT model under the Weibull distribution was investigated. These two responses are linked through random effects correlated with the normal distribution. The longitudinal and survival data are then assumed independent, given the latent linking process and any available covariates. Considering excess zeros for two responses and right censoring, presented a joint model that has not yet been investigated by other researchers. The parameters were also estimated using MCMC methods.


Bahram Haji Joudaki, Soliman Khazaei, Reza Hashemi,
Volume 19, Issue 1 (9-2025)
Abstract

Accelerated failure time models are used in survival analysis when the data is censored, especially when combined with auxiliary variables. When the models in question depend on an unknown parameter, one of the methods that can be applied is Bayesian methods, which consider the parameter space as infinitely dimensional. In this framework, the Dirichlet process mixture model plays an important role. In this paper, a Dirichlet process mixture model with the Burr XII distribution as the kernel is considered for modeling the survival distribution in the accelerated failure time. Then, MCMC methods were employed to generate samples from the posterior distribution. The performance of the proposed model is compared with the Polya tree mixture models based on simulated and real data. The results obtained show that the proposed model performs better.

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 34 queries by YEKTAWEB 4710