|
|
|
 |
Search published articles |
 |
|
Showing 41 results for Regression
Farzane Hashemi, Volume 18, Issue 2 (2-2025)
Abstract
One of the most widely used statistical topics in research fields is regression problems. In these models, the basic assumption of model errors is their normality, which, in some cases, is different due to asymmetry features or break points in the data. Piecewise regression models have been widely used in various fields, and it is essential to detect the breakpoint. The break points in piecewise regression models are necessary to know when and how the pattern of the data structure changes. One of the major problems is that there is a heavy tail in these data, which has been solved by using some distributions that generalize the normal distribution. In this paper, the piecewise regression model will be investigated based on the scale mixture of the normal distribution. Also, this model will be compared with the standard piecewise regression model derived from normal errors.
|
|
|
|
|
|
|