|
|
 |
Search published articles |
 |
|
Showing 21 results for Maximum Likelihood
Mohamad Babazadeh, Sadegh Rezaee, Mousa Abdi, Volume 6, Issue 1 (8-2012)
Abstract
In this paper, a new three-parameter lifetime distribution is introduced by combining an extended exponential distribution with a logarithmic distribution. This flexible distribution has increasing, decreasing and upside-down bathtub failure rate shapes. Various properties of the proposed distribution are discussed. The estimation of the parameters attained by EM algorithm and their asymptotic variance and covariance are obtained. In order to assess the accuracy of the approximation of variance and covariance of the maximum likelihood estimator, a simulation study is presented to illustrate the properties of distribution.
Hamazeh Torabi, Narges Montazeri, Fatemeh Ghasemian, Volume 7, Issue 2 (3-2014)
Abstract
In this paper, some various families constructed from the logit of the generalized Beta, Beta, Kumar, generalized Gamma, Gamma, Weibull, log gamma and Logistic distributions are reviewed. Then a general family of distributions generated from the logit of the normal distribution is proposed. A special case of this family, Normal-Uniform distribution, is defined and studied. Various properties of the distribution are also explored. The maximum likelihood and minimum spacings estimators of the parameters of this distribution are obtained. Finally, the new distribution is effectively used to analysis a real survival data set.
Ali Doostmoradi, Mohammadreza Zadkarami, Mohammadreza Akhoond, Aref Khanjari Idenak, Volume 8, Issue 2 (3-2015)
Abstract
In this paper a new distribution function based on Weibull distribution is introduced. Then the characteristics of this new distribution are considered and a real data set is used to compare this distribution with some of the generalized Weibull distributions.
Akbar Asgharzadeh, Mina Azizpour, Reza Valiollahi, Volume 9, Issue 1 (9-2015)
Abstract
One of the drawbacks of the type II progressive censoring scheme is that the length of the experiment can be very large. Because of that, recently a new censoring scheme named as the type II progressively hybrid censored scheme has received considerable interest among the statisticians. In this paper, the statistical inference for the half-logistic distribution is discussed based on the progressively type II hybrid censored samples. The maximum likelihood estimator, the approximate maximum likelihood estimator and the Bayes estimator of parameter using Lindley approximation and MCMC method are obtained. Asymptotic confidence intervals, Bootstrap confidence intervals and Bayesian credible intervals are obtained. Different point and interval estimators are compared using Monte Carlo simulation. A real data set is presented for illustrative purposes.
Saba Aghadoust, Kamel Abdollahnezhad, Farhad Yaghmaei, Ali Akbar Jafari, Volume 9, Issue 1 (9-2015)
Abstract
The log-normal distribution is used to describe the positive data that has skewed distribution with small mean and large variance. This distribution has application in many sciences for example medicine, economics, biology and alimentary science, etc. Comparison of means of several log-normal populations always has been in focus of researchers, but their test statistics are not easy to derive or extremely complicated for this comparisons. In this paper, the size and power of different testing methods including F-test, likelihood ratio test, generalized p-value approach and computational approach test are compared in a simulation study.
Ali Doostmoradi, Mohammadreza Zadkarami, Aref Khanjari Idenak, Zahara Fereidooni, Volume 10, Issue 1 (8-2016)
Abstract
In this paper we propose a new distribution based on Weibull distribution. This distribution has three parameters which displays increasing, decreasing, bathtub shaped, unimodal and increasing-decreasing-increasing failure rates. Then consider characteristics of this distribution and a real data set is used to compared proposed distribution whit some of the generalized Weibull distribution.
Eisa Mahmoudi, Somayeh Abolhosseini, Volume 10, Issue 1 (8-2016)
Abstract
In this paper we propose a new two-parameters distribution, which is an extension of the Lindley distribution with increasing and bathtub-shaped failure rate, called as the Lindley-logarithmic (LL) distribution. The new distribution is obtained by compounding Lindley (L) and Logarithmic distributions. We obtain several properties of the new distribution such as its probability density function, its failure rate functions, quantiles and moments. The maximum likelihood estimation procedure via a EM-algorithm is presented in this paper. At the end, in order to show the flexibility and potentiality of this new class, some series of real data is used to fit.
Meysam Moghimbeigi, Volume 10, Issue 2 (2-2017)
Abstract
Statistical analysis of fractional Brownian motion process is one of the most important issues in the field of stochastic processes. The most important issue in the study of this process is statistical inference about the Hurst parametersof the fractional Brownian motion. One of the methods for estimation of aforementioned parameter is maximum likelihood approach. Due to the computational complexity of this approach to give a closed estimate, it is attempting to derive the parameter estimated through the numerical method approach. Also, the theoretical result of the paper is evaluated in a simulation study for different scenarios.
Jafar Ahmadi, Mansoureh Razmkhah, Volume 11, Issue 1 (9-2017)
Abstract
Consider a repairable system which starts operating at t=0. Once the system fails, it is immediately replaced by another one of the same type or it is repaired and back to its working functions. In this paper, the system's activity is studied from t>0 for a fixed period of time w. Different replacement policies are considered. In each cases, for a fixed period of time w, the probability model and likelihood function of repair process, say window censored, are obtained. The obtained results depend on the lifetime distribution of the original system, so, expression for the maximum likelihood estimator and Fisher information are derived, by assuming the lifetime follows an exponential distribution.
Rasool Roozegar, Ali Akbar Jafari, Volume 11, Issue 1 (9-2017)
Abstract
In this paper, we introduce a family of bivariate generalized Gompertz-power series distributions. This new class of bivariate distributions contains several models such as: bivariate generalized Gompertz -geometric, -Poisson, - binomial, -logarithmic, -negative binomial and bivariate generalized exponental-power series distributions as special cases. We express the method of construction and derive different properties of the proposed class of distributions. The method of maximum likelihood and EM algorithm are used for estimating the model parameters. Finally, we illustrate the usefulness of the new distributions by means of application to real data sets.
Mohamad Bayat, Hamzeh Torabi, Volume 12, Issue 1 (9-2018)
Abstract
Nowadays, the use of various censorship methods has become widespread in industrial and clinical tests. Type I and Type II progressive censoring are two types of these censors. The use of these censors also has some disadvantages. This article tries to reduce the defects of the type I progressive censoring by making some change to progressive censorship. Considering the number and the time of the withdrawals as a random variable, this is done. First, Type I, Type II progressive censoring and two of their generalizations are introduced. Then, we introduce the new censoring based on the Type I progressive censoring and its probability density function. Also, some of its special cases will be explained and a few related theorems are brought. Finally, the simulation algorithm is brought and for comparison of introduced censorship against the traditional censorships a simulation study was done.
Mahdieh Mozafari, Mehrdad Naderi, Alireza Arabpour, Volume 12, Issue 1 (9-2018)
Abstract
This paper introduces a new distribution based on extreme value distribution. Some properties and characteristics of the new distribution such as distribution function, moment generating function and skewness and kurtosis are studied. Finally, by computing the maximum likelihood estimators of the new distribution's parameters, the performance of the model is illustrated via two real examples.
Peyman Amiri Domari, Mehrdad Naderi, Ahad Jamalizadeh, Volume 12, Issue 2 (3-2019)
Abstract
In order to construct the asymmetric models and analyzing data set with asymmetric properties, an useful approach is the weighted model. In this paper, a new class of skew-Laplace distributions is introduced by considering a two-parameter weight function which is appropriate to asymmetric and multimodal data sets. Also, some properties of the new distribution namely skewness and kurtosis coefficients, moment generating function, etc are studied. Finally, The practical utility of the methodology is illustrated through a real data collection.
Mehrnaz Mohammadpour, Masoumeh Shirozhan, Volume 14, Issue 1 (8-2020)
Abstract
In this paper, we introduce a new integer-valued autoregressive model of first order based on the negative binomial thinning operator, where the noises are serially dependent. Some statistical properties of the model are discussed. The model parameters are estimated by maximum likelihood and Yule-Walker methods. By a simulation study, the performances of the two estimation methods are studied. This survey was carried out to study the efficiency of the new model by applying it on real data.
Mahdi Teimouri, Volume 14, Issue 1 (8-2020)
Abstract
The class of α-stable distributions incorporates both heavy tails and skewness and so are the most widely used class of distributions in several fields of study which incorporates both the skewness and heavy tails. Unfortunately, there is no closed-form expression for the density function of almost all of the members of this class, and so finding the maximum likelihood estimator for the parameters of this distribution is a challenging problem. In this paper, in order to tackle this issue, we propose some type of EM algorithm. The performance of the proposed EM algorithm is demonstrated via simulation and analyzing three sets of real data.
Meysam Mohammadpour, Hossein Bevrani, Reza Arabi Belaghi, Volume 15, Issue 1 (9-2021)
Abstract
Wind speed probabilistic distributions are one of the main wind characteristics for the evaluation of wind energy potential in a specific region. In this paper, 3-parameter Log-Logistic distribution is introduced and it compared with six used statistical models for the modeling the actual wind speed data reported of Tabriz and Orumiyeh stations in Iran. The maximum likelihood estimators method via Nelder–Mead algorithm is utilized for estimating the model parameters. The flexibility of proposed distributions is measured according to the coefficient of determination, Chi-square test, Kolmogorov-Smirnov test, and root mean square error criterion. Results of the analysis show that 3-parameter Log-Logistic distribution provides the best fit to model the annual and seasonal wind speed data in Orumiyeh station and except summer season for Tabriz station. Also, wind power density error is estimated for the proposed different distributions.
Masumeh Ghahramani, Maryam Sharafi, Reza Hashemi, Volume 16, Issue 1 (9-2022)
Abstract
One of the most critical challenges in progressively Type-II censored data is determining the removal plan. It can be fixed or random so that is chosen according to a discrete probability distribution. Firstly, this paper introduces two discrete joint distributions for random removals, where the lifetimes follow the two-parameter Weibull distribution. The proposed scenarios are based on the normalized spacings of exponential progressively Type-II censored order statistics. The expected total test time has been obtained under the proposed approaches. The parameters estimation are derived using different estimation procedures as the maximum likelihood, maximum product spacing and least-squares methods. Next, the proposed random removal schemes are compared to the discrete uniform, the binomial, and fixed removal schemes via a Monte Carlo simulation study in terms of their biases; root means squared errors of estimators and their expected experiment times. The expected experiment time ratio is also discussed under progressive Type-II censoring to the complete sampling plan.
Mr. Ali Rostami, Dr. Mohammad Khanjari Sadegh, Dr. Mohammad Khorashadizadeh, Volume 16, Issue 2 (3-2023)
Abstract
In this article, we consider the estimation of R{r,k}= P(X{r:n1} < Y{k:n2}), when the stress X and strength Y are two independent random variables from inverse Exponential distributions with unknown different scale parameters. R{r,k} is estimated using the maximum likelihood estimation method, and also, the asymptotic confidence interval is obtained. Simulation studies and the performance of this model for two real data sets are presented.
Ali Rostami, Mohammad Khanjari Sadegh, Mohammad Khorashadizadeh, Volume 17, Issue 1 (9-2023)
Abstract
This article considers the stress-strength reliability of a coherent system in the state of stress at the component level. The coherent series, parallel and radar systems are investigated. For 2-component series or parallel systems and radar systems, this reliability based on Exponential distribution is estimated by maximum likelihood, uniformly minimum variance unbiased and Bayes methods. Also, simulation studies have been done to check estimators' performance, and real data are analyzed.
, Dr Seyed Kamran Ghoreishi, Volume 18, Issue 1 (8-2024)
Abstract
In this paper, we first introduce semi-parametric heteroscedastic hierarchical models. Then, we define a new version of the empirical likelihood function (Restricted Joint Empirical likelihood) and use it to obtain the shrinkage estimators of the models' parameters in these models. Under different assumptions, a simulation study investigates the better performance of the restricted joint empirical likelihood function in the analysis of semi-parametric heterogeneity hierarchical models. Furthermore, we analyze an actual data set using the RJEL method.
|
|