|
|
|
 |
Search published articles |
 |
|
Showing 243 results for Type of Study: Research
, Roshanak Zaman, Volume 18, Issue 2 (2-2025)
Abstract
In this paper, the prediction of the lifetime of k-component coherent systems is studied using classical and Bayesian approaches with type-II censored system lifetime data. The system structure and signature are assumed to be known, and the component lifetime distribution follows a half-logistic model. Various point predictors, including the maximum likelihood predictor, the best-unbiased predictor, the conditional median predictor, and the Bayesian point predictor under a squared error loss function, are calculated for the coherent system lifetime. Since the integrals required for Bayes prediction do not have closed forms, the Metropolis-Hastings algorithm and importance sampling methods are applied to approximate these integrals. For type-II censored lifetime data, prediction interval based on the pivotal quantity, prediction interval HCD, and Bayesian prediction interval are considered. A Monte Carlo simulation study and a numerical example are conducted to evaluate and compare the performances of the different prediction methods.
Mohammad Mehdi Saber, Mohsen Mohammadzadeh, Volume 18, Issue 2 (2-2025)
Abstract
In this article, autoregressive spatial regression and second-order moving average will be presented to model the outputs of a heavy-tailed skewed spatial random field resulting from the developed multivariate generalized Skew-Laplace distribution. The model parameters are estimated by the maximum likelihood method using the Kolbeck-Leibler divergence criterion. Also, the best spatial predictor will be provided. Then, a simulation study is conducted to validate and evaluate the performance of the proposed model. The method is applied to analyze a real data.
Farzane Hashemi, Volume 18, Issue 2 (2-2025)
Abstract
One of the most widely used statistical topics in research fields is regression problems. In these models, the basic assumption of model errors is their normality, which, in some cases, is different due to asymmetry features or break points in the data. Piecewise regression models have been widely used in various fields, and it is essential to detect the breakpoint. The break points in piecewise regression models are necessary to know when and how the pattern of the data structure changes. One of the major problems is that there is a heavy tail in these data, which has been solved by using some distributions that generalize the normal distribution. In this paper, the piecewise regression model will be investigated based on the scale mixture of the normal distribution. Also, this model will be compared with the standard piecewise regression model derived from normal errors.
Jalal Chachi, Mohammadreza Akhond, Shokoufeh Ahmadi, Volume 18, Issue 2 (2-2025)
Abstract
The Lee-Carter model is a useful dynamic stochastic model representing the evolution of central mortality rates over time. This model only considers the uncertainty about the coefficient related to the mortality trend over time but not the age-dependent coefficients. This paper proposes a fuzzy extension of the Lee-Carter model that allows quantifying the uncertainty of both kinds of parameters. The variability of the time-dependent index is modeled as a stochastic fuzzy time series. Likewise, the uncertainty of the age-dependent coefficients is quantified using triangular fuzzy numbers. Considering this last hypothesis requires developing and solving a fuzzy regression model. Once the generalization of the desired fuzzy model is introduced, we will show how to fit the logarithm of the central mortality rate in Khuzestan province using by using fuzzy numbers arithmetic during the years 1401-1383 and random fuzzy forecast in the years 1402-1406.
Elham Ranjbar, Mohamad Ghasem Akbari, Reza Zarei, Volume 19, Issue 1 (9-2025)
Abstract
In the time series analysis, we may encounter situations where some elements of the model are imprecise quantities. One of the most common situations is the inaccuracy of the underlying observations, usually due to measurement or human errors. In this paper, a new fuzzy autoregressive time series model based on the support vector machine approach is proposed. For this purpose, the kernel function has been used for the stability and flexibility of the model, and the constraints included in the model have been used to control the points. In order to examine the performance and effectiveness of the proposed fuzzy autoregressive time series model, some goodness of fit criteria are used. The results were based on one example of simulated fuzzy time series data and two real examples, which showed that the proposed method performed better than other existing methods.
Mohammad Shafaei Noughabi, Mohammad Khorashadizade, Volume 19, Issue 1 (9-2025)
Abstract
This article introduces a new extension of the log-logistic distribution, and its properties and parameter estimation are studied and analyzed. It is shown that adding a parameter to this distribution makes its shape more symmetric and less skewed as the parameter increases. Unlike the original distribution, the moments of the new distribution and its quantile function always exist. Furthermore, it is demonstrated that the reliability measures, such as the hazard rate function, the mean residual life function, and stochastic orderings, are more flexible in the new distribution. Additionally, the parameters of the distribution are estimated using the LLP and ML methods, and the efficiency and consistency of the estimators are evaluated through simulation studies. Finally, the practical applicability of the model is demonstrated by applying the new model to real-world data from airborne equipment and lung cancer patients.
Om-Aulbanin Bashiri Goudarzi, Abdolreza Sayyareh, Sedigheh Zamani Mehreyan, Volume 19, Issue 1 (9-2025)
Abstract
The boosting algorithm is a hybrid algorithm to reduce variance, a family of machine learning algorithms in supervised learning. This algorithm is a method to transform weak learning systems into strong systems based on the combination of different results. In this paper, mixture models with random effects are considered for small areas, where the errors follow the AR-GARCH model. To select the variable, machine learning algorithms, such as boosting algorithms, have been proposed. Using simulated and tax liability data, the boosting algorithm's performance is studied and compared with classical variable selection methods, such as the step-by-step method.
Arezu Rahmanpour, Yadollah Waghei, Gholam Reza Mohtashami Borzadaran, Volume 19, Issue 1 (9-2025)
Abstract
Change point detection is one of the most challenging statistical problems because the number and position of these points are unknown. In this article, we will first introduce the concept of change point and then obtain the parameter estimation of the first-order autoregressive model AR(1); in order to investigate the precision of estimated parameters, we have done a simulation study. The precision and consistency of parameters were evaluated using MSE. The simulation study shows that parameter estimation is consistent. In the sense that as the sample size increases, the MSE of different parameters converges to zero. Next, the AR(1) model with the change point was fitted to Iran's annual inflation rate data (from 1944 to 2022), and the inflation rate in 2023 and 2024 was predicted using it.
Tara Mohammadi, Hadi Jabbari, Sohrab Effati, Volume 19, Issue 1 (9-2025)
Abstract
Support vector machine (SVM) as a supervised algorithm was initially invented for the binary case, then due to its applications, multi-class algorithms were also designed and are still being studied as research. Recently, models have been presented to improve multi-class methods. Most of them examine the cases in which the inputs are non-random, while in the real world, we are faced with uncertain and imprecise data. Therefore, this paper examines a model in which the inputs are uncertain and the problem's constraints are also probabilistic. Using statistical theorems and mathematical expectations, the problem's constraints have been removed from the random state. Then, the moment estimation method has been used to estimate the mathematical expectation. Using Monte Carlo simulation, synthetic data has been generated and the bootstrap resampling method has been used to provide samples as input to the model and the accuracy of the model has been examined. Finally, the proposed model was trained with real data and its accuracy was evaluated with statistical indicators. The results from simulation and real examples show the superiority of the proposed model over the model based on deterministic inputs.
Alireza Beheshty, Hosein Baghishani, Mohammadhasan Behzadi, Gholamhosein Yari, Daniel Turek, Volume 19, Issue 1 (9-2025)
Abstract
Financial and economic indicators, such as housing prices, often show spatial correlation and heterogeneity. While spatial econometric models effectively address spatial dependency, they face challenges in capturing heterogeneity. Geographically weighted regression is naturally used to model this heterogeneity, but it can become too complex when data show homogeneity across subregions. In this paper, spatially homogeneous subareas are identified through spatial clustering, and Bayesian spatial econometric models are then fitted to each subregion. The integrated nested Laplace approximation method is applied to overcome the computational complexity of posterior inference and the difficulties of MCMC algorithms. The proposed methodology is assessed through a simulation study and applied to analyze housing prices in Mashhad City.
Zahra Nicknam, Rahim Chinipardaz, Volume 19, Issue 1 (9-2025)
Abstract
Classical hypothesis tests for the parameters provide suitable tests when the hypotheses are not restricted. The best are the uniformly most powerful test and the uniformly most powerful unbiased test. These tests are designed for specific hypotheses, such as one-sided and two-sided for the parameter. However, in practice, we may encounter hypotheses that the parameters under test have typical restrictions in the null or alternative hypothesis. Such hypotheses are not included in the framework of classical hypothesis testing. Therefore, statisticians are looking for more powerful tests than the most powerful ones. In this article, the union-intersection test for the sign test of variances in several normal distributions is proposed and compared with the likelihood ratio test. Although the union-intersection test is more powerful, neither test is unbiased. Two rectangular and smoothed tests have been examined for a more powerful test.
Dr Adeleh Fallah, Volume 19, Issue 1 (9-2025)
Abstract
In this paper, estimation for the modified Lindley distribution parameter is studied based on progressive Type II censored data. Maximum likelihood estimation, Pivotal estimation, and Bayesian estimation were calculated using the Lindley approximation and Markov chain Monte Carlo methods. Asymptotic, Pivotal, bootstrap, and Bayesian confidence intervals are provided. A Monte Carlo simulation study has been conducted to evaluate and compare the performance of different estimation methods. To further illustrate the introduced estimation methods, two real examples are provided.
Bahram Tarami, Nahid Sanjari Farsipour, Hassan Khosravi, Volume 19, Issue 2 (4-2025)
Abstract
In many applications, observations have a skewness, an elongated shape, a heavy tail, a multi-mode structure, or a mixed distribution. Therefore, models based on the normal distribution cannot provide correct inferences under such conditions and can lead to biased estimators or increased variance. The Laplace distribution and its generalizations can be suitable alternatives in such situations due to their elongation, heavy tails, and skewness. On the other hand, in models based on mixed distributions, there is always a possibility that fewer samples are available from one or more components. Therefore, given the Bayesian approach's advantage in handling small samples, this research developed a Bayesian model to fit a finite mixed regression model with skew-Laplace distributions and conducted a simulation study to assess its performance. Laplace has been compared in two approaches, frequentist and Bayesian. The results show that the Bayesian approach of the model is more effective than other models.
Dr. Mahdi Alimohammadi, Mrs. Rezvan Gharebaghi, Volume 19, Issue 2 (4-2025)
Abstract
It was proved about 60 years ago that if a continuous random variable X has an increasing failure rate then its order statistics will also be increasing failure rate, and this problem remained unproved for the discrete case until recently a proof method using an integral inequality was provided. In this article, we present a completely different method to solve this problem.
, Hadi Alizadeh Noughabi, Majid Chahkandi, Volume 19, Issue 2 (4-2025)
Abstract
In today’s industrial world, effective maintenance plays a key role in reducing costs and improving productivity. This paper introduces goodness-of-fit tests based on information measures, including entropy, extropy, and varentropy, to evaluate the type of repair in repairable systems. Using system age data after repair, the tests examine the adequacy of the arithmetic reduction of age model of order 1. The power of the proposed tests is compared with classical tests based on martingale residuals and the probability integral transform. Simulation results show that the proposed tests perform better in identifying imperfect repair models. Their application to real data on vehicle failures also indicates that this model provides a good fit.
Omid Kharazmi, Faezeh Shirazi-Niya, Volume 19, Issue 2 (4-2025)
Abstract
In this paper, by considering the generalized chi-squared information and the relative generalized chi-squared information measures, discrete versions of these information measures are introduced. Then, generalizations of these information quantities based on their convexity property are presented. Some essential features of these new measures and their relationships are studied. Moreover, the performance of these new information measures is investigated for some well-known and widely used models in coding theory and thermodynamics, such as escort distributions and generalized escort distributions. Finally, two applications of the introduced discrete generalized chi-squared information measure are examined in the context of image quality assessment. In addition, the results obtained from the performance of these measures are compared with the performance of the critical metric, peak signal-to-noise ratio. It is shown that the generalized chi-squared divergence measure exhibits performance similar to the peak signal-to-noise ratio and can be used as an alternative metric.
Ebrahim Amini-Seresht, Volume 19, Issue 2 (4-2025)
Abstract
In this paper, a nonparametric test based on incomplete data is proposed to investigate the usual stochastic order using an extension of Banerjee statistic for Type I censored data. This extension is optimized with weight coefficients based on Simpson's rule and the bootstrap method with 10000 iterations to estimate the empirical distribution of the proposed test statistic. The empirical distribution of the statistic under censoring is studied, and the power of the test is evaluated using Monte Carlo simulations against the Lehmann alternative model.
Shahram Yaghoobzadeh, Volume 19, Issue 2 (4-2025)
Abstract
Studying various models in queueing theory is essential for improving the efficiency of queueing systems. In this paper, from the family of models {E_r/M/c; r,c in N}, the E_r/M/3 model is introduced, and quantities such as the distribution of the number of customers in the system, the average number of customers in the queue and in the system, and the average waiting time in the queue and in the system for a single customer are obtained. Given the crucial role of the traffic intensity parameter in performance evaluation criteria of queueing systems, this parameter is estimated using Bayesian, E‑Bayesian, and hierarchical Bayesian methods under the general entropy loss function and based on the system’s stopping time. Furthermore, based on the E‑Bayesian estimator, a new estimator for the traffic intensity parameter is proposed, referred to in this paper as the E^2‑Bayesian estimator. Accordingly, among the Bayesian, E‑Bayesian, hierarchical Bayesian, and the new estimator, the one that minimizes the average waiting time in the customer queue is considered the optimal estimator for the traffic intensity parameter in this paper. Finally, through Monte Carlo simulation and using a real dataset, the superiority of the proposed estimator over the other mentioned estimators is demonstrated.
Dr Mahdi Rasekhi, Volume 20, Issue 1 (9-2026)
Abstract
In this paper, a first-order integer-valued autoregressive process with non-negative integer values is introduced, based on the binomial thinning operator and driven by Poisson-Komal distributed noise. To estimate the parameters of the proposed model, two estimation methods are investigated: Conditional Maximum Likelihood Estimation and the Yule–Walker Method. Furthermore, the performance of these estimation techniques is evaluated through a simulation study. In addition, the practical applicability of the proposed model is demonstrated using two real-world datasets from the field of veterinary sciences.
Dr Tahere Manouchehri, Dr Ali Reza Nematollahi, Volume 20, Issue 1 (9-2026)
Abstract
In this paper, we present a comprehensive review and comparative analysis of estimation methods for periodic autoregressive (PAR) models driven by scale mixture of skew-normal (SMSN) innovations, a flexible class suitable for modeling both symmetric and asymmetric data. Expectation-conditional maximization algorithms are employed to develop maximum likelihood, maximum a posteriori, and Bayesian estimation procedures. A thorough evaluation of these methods is conducted using simulation studies, with particular attention to asymptotic properties and robustness against outliers, high peaks, and heavy tails. To demonstrate their practical utility, these methods are applied to monthly Google stock price data.
|
|