[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
General users only can access the published articles
Showing 33 results for Subject:

Firouzeh Rivaz, Mohsen Mohammadzadeh, Majid Jafari Khaledi,
Volume 1, Issue 1 (9-2007)
Abstract

In Bayesian prediction of a Gaussian space-time model, unknown parameters are considered as random variables with known prior distributions and, then the posterior and Bayesian predictive distributions are approximated with discritization method. Since prior distributions are often unknown, in this paper, parametric priors are considered. Then the empirical Bayes approach is used to estimate the prior distributions. Replacing these estimates in the Bayesian predictive distribution, an empirical Bayes space-time predictor and prediction variance are determined. Then an environmental example is used to illustrate the application of the proposed method. Finally the accuracy of the empirical Bayes space-time predictor is considered with cross validation criterion.
Rasoul Garaaghaji Asl, Mohammad Reza Meshkani, Soghrat Faghihzadeh, Anoushirvan Kazemnazhad, Gholamreza Babayi, Farid Zayeri,
Volume 1, Issue 2 (2-2008)
Abstract

Modeling correlated ordinal response data is usually more complex than the case of continuous and binary responses. Existing literature lacks an appropriate approach to modeling such data. For small sample sizes, however, these models lose their appeal since their inferences are based on large samples. In this work, the Bayesian analysis of an asymmetric bivariate ordinal latent variable model has been developed. The latent response variable has been chosen to follow the generalized bivariate Gumble distribution. Using some specific priors and MCMC algorithms the regression parameters were estimated. As an application, a data set concerning Diabetic Retinopathy in 116 patients have been analyzed. This data set includes the disease status of each eye for patients as an ordinal response and a number of explanatory variables some of which are common to both eyes and the rest are organ-specific.

Mitra Rahimzadeh, Ebrahim Hajizadeh, Farzad Eskandari, Soleyman Kheiri,
Volume 2, Issue 1 (8-2008)
Abstract

In the survival analysis, when there is a cure fraction and the occurrence times of events are correlated, the cure frailty model is utilized. The main objective is to propose a method of analysis for two types of correlated frailty in the non-mixture cured model in order to separate the individual and shared heterogeneity between subjects. The cure models with correlated frailty and promotion time are considered. In both models, the likelihood function are based on piecewise exponential distribution for hazard function. To estimate the parameters, hierarchical Bayesian modeling is employed. Due to non-closed forms of the posteriors, they are estimated by MCMC algorithms. The Cox correlated frailty model is used as a benchmark and models are compared by DIC Criterion . The results show the superiority of cure models with correlated frailty.

Hossein Naraghi, Ali Iranmanesh,
Volume 2, Issue 1 (8-2008)
Abstract

In this paper, first we define the commutativity of two fuzzy subgroups, and then we computed the probability of commutativity of the group Zpn which its support is exactly  Zp m for m<=n.
Shohre Jalaei, Soghrat Faghihzadeh, Farzad Eskandari, Touba Ghazanfari,
Volume 2, Issue 1 (8-2008)
Abstract

Part of the recent literature on the evaluation of surrogate endpoints is started by a definition of validity in terms of both trial-level and individual-level association between a potential surrogate and a true endpoint. In another part, we review the main considerable statistical methods being proposed for the evaluation of a biomarker as surrogate endpoints, which have developed and consider how the validation process might be arranged within the regulatory and practical constraints evaluation. In the present work, we propose a new. Bayesian approach to evaluate individual level surrogacy. Deferent variations to prior distributions were implemented for responses with binomial distribution. Then these methods are compared in a simulation study. Finally, we apply and compare the previous and new methodology using a clinical study.

Ameneh Kheradmandi, Nahid Sanjari Fasipour,
Volume 3, Issue 1 (9-2009)
Abstract

Gomez et al. (2007) introduced the skew t-normal distribution, showing that it is a good alternative to model heavy tailed data with strong symmetrical nature, specially because it has a larger range of skewness than the skew-normal distribution. Gomez et al. (2007) and Lin et al. (2009) described some properties of this distribution. In this paper, we consider some further properties of skew student-t-normal distribution. Also, we present four theorems for constructing of this distribution. Next we illustrate a numerical example to model the Vanadium pollution data in the Shadegan Wetland by using skew student-t-normal distribution.
Behzad Mahmoudian, Mousa Golalizadeh,
Volume 3, Issue 1 (9-2009)
Abstract

Modeling of extreme responses in presence nonlinear, temporal, spatial and interaction effects can be accomplished with mixed models. In addition, smoothing spline through mixed model and Bayesian approach together provide convenient framework for inference of extreme values. In this article, by representing as a mixed model, smoothing spline is used to assess nonlinear covariate effect on extreme values. For this reason, we assume that extreme responses given covariates and random effects are independent with generalized extreme value distribution. Then by using MCMC techniques in Bayesian framework, location parameter of distribution is estimated as a smooth function of covariates. Finally, the proposed model is employed to model the extreme values of ozone data.
Mehdi Akbarzadeh, Hamid Alavimajd, Yadollah Mehrabi, Maryam Daneshpoor, Anvar Mohammadi,
Volume 3, Issue 2 (3-2010)
Abstract

  One of the important problems that bring up in genetic fields is determining of loci of special gene in order to gene mapping and generating more effective drugs in medicine. Genetic linkage analysis is one important stage in this way. Haseman-Elston method is a quantitative statistical method that is used by biostatisticians and geneticists for genetic linkage analysis. The original Haseman-Elston method is presented in the year 1972 and ever after many investigators recommended some suggestions to make better it. In this article, we introduce the Haseman-Elston regression method and its extensions through 1972 to 2009. and finally we show performance of these methods in a practical example.


Atefeh Farokhy, Mousa Golalizadeh,
Volume 4, Issue 1 (9-2010)
Abstract

The multilevel models are used in applied sciences including social sciences, sociology, medicine, economic for analysing correlated data. There are various approaches to estimate the model parameters when the responses are normally distributed. To implement the Bayesian approach, a generalized version of the Markov Chain Monte Carlo algorithm, which has a simple structure and removes the correlations among the simulated samples for the fixed parameters and the errors in higher levels, is used in this article. Because the dimension of the covariance matrix for the new error vector is increased, based upon the Cholesky decomposition of the covariance matrix, two methods are proposed to speed the convergence of this approach. Then, the performances of these methods are evaluated in a simulation study and real life data.
Behrooz Kavehie, Soghrat Faghihzadeh, Farzad Eskandari, Anooshiravan Kazemnejad, Tooba Ghazanfari,
Volume 4, Issue 2 (3-2011)
Abstract

Sometimes it is impossible to directly measure the effect of intervention (medicine or therapeutic methods) in medical researches. That is because of high costs, long time, the aggressiveness of therapeutic methods, lack of clinical responses, and etc. In such cases, the effect of intervention on surrogate variables is measured. Many statistical studies have been accomplished for measuring the validity of surrogates and introducing a criterion for testing. The first criterion was established based on hypothesis testing. Other criterions were introduced over time. Then by using the classic methods, the Likelihood Ratio Factor was introduced. After that, the Bayesian Likelihood Ratio Factor developed and published. This article aims to introduce the Bayesian Likelihood Ratio Factor based on time dependent data. The illness under study is lung disease in victims of chemical weapons. The surrogate therapy method uses the forced expiratory volume at fist second.

Hamid Reza Rasouli,
Volume 5, Issue 2 (2-2012)
Abstract

In this paper the different types of autoregressive models were described for analysis of spatial data. Then the model parameters were estimated using maximum profile likelihood function by assuming that the dependent variables or error terms have spatially autoregressive relationship. Next all the models were evaluated and finally, the application of the model is illustrated in a real example.

Amal Saki Malehi, Ebrahim Hajizadeh, Kambiz Ahmadi,
Volume 6, Issue 1 (8-2012)
Abstract

The survival analysis methods are usually conducted based on assumption that the population is homogeneity. However, generally, this assumption in most cases is unrealistic, because of unobserved risk factors or subject specific random effect. Disregarding the heterogeneity leads to unbiased results. So frailty model as a mixed model was used to adjust for uncertainty that cannot be explained by observed factors in survival analysis. In this paper, family of power variance function distributions that includes gamma and inverse Gaussian distribution were introduced and evaluated for frailty effects. Finally the proportional hazard frailty models with Weibull baseline hazard as a parametric model used for analyzing survival data of the colorectal cancer patients.

Mohammad Gholami Fesharaki, Anoshirvan Kazemnejad, Farid Zayeri,
Volume 6, Issue 1 (8-2012)
Abstract

Skew Normal distribution is important in analyzing non-normal data. The probability density function of skew Normal distribution contains integral function which tends researchers to some problems. Because of this problem, in this paper a simpler Bayesian approach using conditioning method is proposed to estimate the parameters of skew Normal distribution. Then the accuracy of this metrology is compared with ordinary Bayesian method in a simulation study.

Hamidreza Fotouhi, Mousa Golalizadeh,
Volume 6, Issue 2 (2-2013)
Abstract

One of the typical aims of statistical shape analysis, in addition to deriving an estimate of mean shape, is to get an estimate of shape variability. This aim is achived through employing the principal component analysis. Because the principal component analysis is limited to data on Euclidean space, this method cannot be applied for the shape data which are inherently non-Euclidean data. In this situation, the principal geodesic analysis or its linear approximation can be used as a generalization of the principal component analysis in non-Euclidean space. Because the main root of this method is the gradient descent algorithm, revealing some of its main defects, a new algorithm is proposed in this paper which leads to a robust estimate of mean shape and also preserves the geometrical structure of shape. Then, providing some theoretical aspects of principal geodesic analysis, its application is evaluated in a simulation study and in real data.

Kobra Gholizadeh, Mohsen Mohammadzadeh, Zahra Ghayyomi,
Volume 7, Issue 1 (9-2013)
Abstract

In Bayesian analysis of structured additive regression models which are a flexible class of statistical models, the posterior distributions are not available in a closed form, so Markov chain Monte Carlo algorithm due to complexity and large number of hyperparameters takes long time. Integrated nested Laplace approximation method can avoid the hard simulations using the Gaussian and Laplace approximations. In this paper, consideration of spatial correlation of the data in structured additive regression model and its estimation by the integrated nested Laplace approximation are studied. Then a crime data set in Tehran city are modeled and evaluated. Next, a simulation study is performed to compare the computational time and precision of the models provided by the integrated nested Laplace approximation and Markov chain Monte Carlo algorithm

Mohammad Gholami Fesharaki, Anoshirvan Kazemnejad, Farid Zayeri,
Volume 7, Issue 2 (3-2014)
Abstract

In two level modeling, random effect and error's normality assumption is one of the basic assumptions. Violating this assumption leads to incorrect inference about coefficients of the model. In this paper, to resolve this problem, we use skew normal distribution instead of normal distribution for random and error components. Also, we show that ignoring positive (negative) skewness in the model causes overestimating (underestimating) in intercept estimation and underestimating (overestimating) in slope estimation by a simulation study. Finally, we use this model to study relationship between shift work and blood cholesterol.

Hashem Mahmoudnejad, Mousa Golalizadeh,
Volume 7, Issue 2 (3-2014)
Abstract

Although the measurement error exists in the most scientific experiments, in order to simplify the modeling, its presence is usually ignored in statistical studying. In this paper, various approaches on estimating the parameters of multilevel models in presence of measurement error are studied. In addition, to improve the parameter estimates in this case, a new method is proposed which has high precision and reasonable convergence rate in compare with previous common approaches. Also, the performance of the proposed method as well as usual approaches are evaluated and compared using simulation study and analyzing real data of the income-expenditure of some households in Tehran city in 2008.

Anahita Nodehi, Mousa Golalizadeh,
Volume 8, Issue 1 (9-2014)
Abstract

Bivariate Von Mises distribution, which behaves relatively similar to bivariate normal distributions, has been proposed for representing the simultaneously probabilistic variability of these angles. One of the remarkable properties of this distribution is having the univariate Von Mises as the conditional density. However, the marginal density takes various structures depend on its involved parameters and, in general, has no closed form. This issue encounters the statistical inference with particular problems. In this paper, this distribution and its properties are studied, then the procedure to sample via the acceptance-rejection algorithm is described. The problems encountered in choosing a proper candidate distribution, arising from the cyclic feature of both angles, is investigated and the properties of its conditional density is utilized to overcome this obstacle.

Mahnaz Nabil, Mousa Golalizadeh,
Volume 8, Issue 2 (3-2015)
Abstract

Recently, employing multivariate statistical techniques for data, that are geometrically random, made more attention by the researchers from applied disciplines. Shape statistics, as a new branch of stochastic geometry, constitute batch of such data. However, due to non-Euclidean feature of such data, adopting usual tools from the multivariate statistics to proper statistical analysis of them is not somewhat clear. How to cluster the shape data is studied in this paper and then its performance is compared with the traditional view of multivariate statistics to this subject via applying these methods to analysis the distal femur.

S. Morteza Najibi, Mousa Golalizadeh, Mohammad Reza Faghihi,
Volume 9, Issue 2 (2-2016)
Abstract

In this paper, we study the applicability of probabilistic solutions for the alignment of tertiary structure of proteins and discuss its difference with the deterministic algorithms. For this purpose, we introduce two Bayesian models and address a solution to add amino acid sequence and type (primary structure) to protein alignment. Furthermore, we will study the parameter estimation with Markov Chain Monte Carlo sampling from the posterior distribution. Finally, in order to see the effectiveness of these methods in the protein alignment, we have compared the parameter estimations in a real data set.


Page 1 from 2    
First
Previous
1
 

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.11 seconds with 53 queries by YEKTAWEB 4704