|
|
 |
Search published articles |
 |
|
Showing 8 results for zaman
Ehsan Zamanzadeh, Naser Arghami, Volume 2, Issue 2 (2-2009)
Abstract
In this paper, we first introduce two new entropy estimators. These estimators are obtained by correcting Corea(1995)'s estimator in the extreme points and also assigning different weights to the end points.We then make a comparison among our proposed new entropy estimators and the entropy estimators proposed by Vasicek (1976), Ebrahimi, et al. (1994) and Corea(1995). We also introduce goodness of fit tests for exponentiality and normality based on our proposed entropy estimators. Results of a simulation study show that the proposed estimators and goodness of fit tests have good performances in comparison with the leading competitors.
Elham Zamanzadeh, Jafar Ahmadi, Volume 5, Issue 1 (9-2011)
Abstract
In this paper, first a brief introduction of ranked set sampling is presented. Then, construction of confidence intervals for a quantile of the parent distribution based on ordered ranked set sample is given. Because the corresponding confidence coefficient is an step function, one may not be able to find the exact prescribed value. With this in mind, we introduce a new method and show that one can obtained an optimal confidence interval by appealing the proposed approach. We also compare the proposed scheme with the other existence methods.
Ehsan Zamanzade, Volume 7, Issue 1 (9-2013)
Abstract
In this paper, two new entropy estimators are proposed. Then, entropy-based tests of exponentiality based on our entropy estimators are introduced. Simulation results show that the proposed estimators and related goodness of fit tests have good performances in comparison with their leading competitors.
Sedighe Zamani Mehryan, Ali Reza Nematollahi, Volume 7, Issue 2 (3-2014)
Abstract
In this paper, the pseudo-likelihood estimators and the limiting distribution of the score test statistic associated with several hypothesis tests such as unit root test for the linear regression models with stationary and nonstationary residuals are calculated. The limiting behavior of theses test statistics by using a simpler approach of the original presentation is derived. Also by using a Mont Carlo method, it is shown that the derived pseudo-likelihood estimators are appropriate. The quantiles of the limiting distribution of the test statistic for a unit root are also calculated and a new table is provided which can be used by researchers for the unit root test.
Ehsan Zamanzade, Volume 8, Issue 2 (3-2015)
Abstract
In this paper, an improved mean estimator for unbalanced ranked set samples is proposed. The estimator is obtained by using the fact that distribution function of order statistics are stochastically ordered. Also, it is showed that this estimator is convergent and has better performance than its empirical counterpart in unbalanced ranked set samples.
Hamed Mohamadghasemi, Ehsan Zamanzade, Mohammad Mohammadi, Volume 10, Issue 1 (8-2016)
Abstract
Judgment post stratification is a sampling strategy which uses ranking information to give more efficient statistical inference than simple random sampling. In this paper, we introduce a new mean estimator for judgment post stratification. The estimator is obtained by using ordering observations in post strata. Our simulation results indicate that the new estimator performs better than its leading competitors in the literature.
Eisa Mahmoudi, Soudabeh Sajjadipanah, Mohammad Sadegh Zamani, Volume 16, Issue 1 (9-2022)
Abstract
In this paper, a modified two-stage procedure in the Autoregressive model AR(1) is considered, which investigates the point and the interval estimation of the mean based on the least-squares estimator. The modified two-stage procedure is as effective as the best fixed-sample size procedure. In this regard, the significant properties of the procedure, including asymptotic risk efficiency, first-order efficiency, consistent, and asymptotic distribution of the mean, are established. Then, a Monte Carlo simulation study is deduced to investigate the modified two-stage procedure. The performance of estimators and confidence intervals are evaluated utilizing a simulation study. Finally, real-time series data is considered to illustrate the applicability of the modified two-stage procedure.
, Roshanak Zaman, Volume 18, Issue 2 (2-2025)
Abstract
In this paper, the prediction of the lifetime of k-component coherent systems is studied using classical and Bayesian approaches with type-II censored system lifetime data. The system structure and signature are assumed to be known, and the component lifetime distribution follows a half-logistic model. Various point predictors, including the maximum likelihood predictor, the best-unbiased predictor, the conditional median predictor, and the Bayesian point predictor under a squared error loss function, are calculated for the coherent system lifetime. Since the integrals required for Bayes prediction do not have closed forms, the Metropolis-Hastings algorithm and importance sampling methods are applied to approximate these integrals. For type-II censored lifetime data, prediction interval based on the pivotal quantity, prediction interval HCD, and Bayesian prediction interval are considered. A Monte Carlo simulation study and a numerical example are conducted to evaluate and compare the performances of the different prediction methods.
|
|