|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Taheri
Bibi Maryam Taheri, Hadi Jabbari, Mohammad Amini, Volume 16, Issue 1 (9-2022)
Abstract
Paying attention to the copula function in order to model the structure of data dependence has become very common in recent decades. Three methods of estimation, moment method, mixture method, and copula moment, are considered to estimate the dependence parameter of copula function in the presence of outlier data. Although the moment method is an old method, sometimes this method leads to inaccurate estimation. Thus, two other moment-based methods are intended to improve that old method. The simulation study results showed that when we use copula moment and mixture moment for estimating the dependence parameter of copula function in the presence of outlier data, the obtained MSEs are smaller. Also, the copula moment method is the best estimate based on MSE. Finally, the obtained numerical results are used in a practical example.
Ms. Samira Taheri, Dr Mohammad Ghasem Akbari, Dr Gholamreza Hesamian, Volume 18, Issue 1 (8-2024)
Abstract
In this paper, based on the concept of $alpha$-values of fuzzy random variables, the fuzzy moving average model of order $q$ is introduced. In this regard, first, the definitions of variance, covariance, and correlation coefficient between fuzzy random variables are presented, and their properties are investigated. In the following, while introducing the fuzzy moving average model of order $q$, this model's autocovariance and autocorrelation functions are calculated. Finally, some examples are presented for the obtained results.
|
|
|
|
|
|
|