[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Shojaei

Ebrahim Khodaie, Roohollah Shojaei,
Volume 6, Issue 1 (8-2012)
Abstract

Sampling weights are calibrated according to the theory of calibration when the sum of population total for auxiliary variables is known. Under known population, totals for auxiliary variables and some conditions Devile and Sarndal showed that generalized regression estimators could approximate calibration estimators and their variances. In this paper, under unknown population totals for auxiliary variables, an estimator for the population total is proposed and its variance is obtained. It is shown that our estimator for the population total is more efficient than the Horvitz-Thompson estimators by theoretically and simulation results.

Masoumeh Bakhshi Shojaei, Omid Karimi,
Volume 10, Issue 1 (8-2016)
Abstract

Skew spatial data often are modeled by using skew Gaussian random field. The main problem is that simulations from this random field are very time consuming for some parameter values and large dimensions. Also it is impossible in some cases and requires using of an approximation methods. One a spatial statistics branch often used to determine the natural resources such as oil and gas, is analysis of seismic data by inverse model. Bayesian Gaussian inversion model commonly is used in seismic inversion that the analytical and computational can easily be done for large dimensions. But in practice, we are encountered with the variables that are asymmetric and skewed. They are modeled using skew distributions. In Bayesian Analysis of closed skew Gaussian inversion model, there is an important problem to generate samples from closed skew normal distributions. In this paper, an efficient algorithm for the realization of the Closed Skew Normal Distribution is provided with higher dimensions. Also the Closed Skew T Distribution is offered that include heavy tails in the density function and the simulation algorithm for generating samples from the Closed Skew T Distribution is provided. Finally, the discussion and conclusions are presented.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 34 queries by YEKTAWEB 4714