|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Nili Sani
Azadeh Mojiri, Yadolla Waghei, Hamid Reza Nili Sani, Gholam Reza Mohtashami Borzadaran, Volume 12, Issue 1 (9-2018)
Abstract
Prediction of spatial variability is one of the most important issues in the analysis of spatial data. So predictions are usually made by assuming that the data follow a spatial model. In General, the spatial models are the spatial autoregressive (SAR), the conditional autoregressive and the moving average models. In this paper, we estimated parameter of SAR(2,1) model by using maximum likelihood and obtained formulas for predicting in SAR models, including the prediction within the data (interpolation) and outside the data (extrapolation). Finally, we evaluate the prediction methods by using image processing data.
Emad Ashtari Nezhad, Yadollah Waghei, Gholam Reza Mohtashami Borzadaran, Hamid Reza Nili Sani, Hadi Alizadeh Noughabi, Volume 13, Issue 1 (9-2019)
Abstract
Before analyzing a time series data, it is better to verify the dependency of the data, because if the data be independent, the fitting of the time series model is not efficient. In recent years, the power divergence statistics used for the goodness of fit test. In this paper, we introduce an independence test of time series via power divergence which depends on the parameter λ. We obtain asymptotic distribution of the test statistic. Also using a simulation study, we estimate the error type I and test power for some λ and n. Our simulation study shows that for extremely large sample sizes, the estimated error type I converges to the nominal α, for any λ. Furthermore, the modified chi-square, modified likelihood ratio, and Freeman-Tukey test have the most power.
|
|
|
|
|
|
|