[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 2 results for Mojiri

Arezou Mojiri, Soroush Alimoradi, Mohammadreza Ahmadzade,
Volume 7, Issue 1 (9-2013)
Abstract

Logistic regression models in classification problems by assuming the linear effects of covariates is a modeling for class membership posterior probabilities. The main problem that includes nonlinear combinations of covariates is maximum likelihood estimation (MLE) of the model parameters. In recent investigations, an approach of solving this problem is combination of neural networks, evolutionary algorithms and MLE methods. In this paper, another type of radial basis functions, namely inverse multiquadratic functions and hybrid method, are considered for estimating the parameters of these models. The experimental results of comparing the proposed models show that the inverse multiquadratic functions compared to the Gaussian functions have better precision in classification problems.

Azadeh Mojiri, Yadolla Waghei, Hamid Reza Nili Sani, Gholam Reza Mohtashami Borzadaran,
Volume 12, Issue 1 (9-2018)
Abstract

Prediction of spatial variability is one of the most important issues in the analysis of spatial data. So predictions are usually made by assuming that the data follow a spatial model. In General, the spatial models are the spatial autoregressive (SAR), the conditional autoregressive and the moving average models. In this paper, we estimated parameter of SAR(2,1) model by using maximum likelihood and obtained formulas for predicting in SAR models, including the prediction within the data (interpolation) and outside the data (extrapolation). Finally, we evaluate the prediction methods by using image processing data.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.14 seconds with 32 queries by YEKTAWEB 4704