|
|
 |
Search published articles |
 |
|
Showing 6 results for Kazemi
Sakineh Sadeghi, Iraj Kazemi, Volume 3, Issue 1 (9-2009)
Abstract
Recently, dynamic panel data models are comprehensively used in social and economic studies. In fitting these models, a lagged response is incorrectly considered as an explanatory variable. This ad-hoc assumption produces unreliable results when using conventional estimation approaches. A principle issue in the analysis of panel data is to take into account the variability of experimental individual effects. These effects are usually assumed fixed in many studies, because of computational complexity. In this paper, we assume random individual effects to handle such variability and then compare the results with fixed effects. Furthermore, we obtain the model parameter estimates by implementing the maximum likelihood and Gibbs sampling methods. We also fit these models on a data set which contains assets and liabilities of banks in Iran.
Afshin Fallah, Mahsa Nadifar, Ramin Kazemi, Volume 7, Issue 1 (9-2013)
Abstract
In this paper the regression analysis with finite mixture bivariate poisson response variable is investigated from the Bayesian point of view. It is shown that the posterior distribution can not be written in a closed form due to the complexity of the likelihood function of bivariate Poisson distribution. Hence, the full conditional posterior distributions of the parameters are computed and the Gibbs algorithm is used to sampling from posterior distributions. A simulation study is performed in order to assess the proposed Bayesian model and its efficiency in estimation of the parameters is compared with their frequentist counterparts. Also, a real example presented to illustrate and assess the proposed Bayesian model. The results indicate to the more efficiency of the estimators resulted from Bayesian approach than estimators of frequentist approach at least for small sample sizes.
Afshin Fallah, Ramin Kazemi, Hasan Khosravi, Volume 11, Issue 2 (3-2018)
Abstract
Regression analysis is done, traditionally, considering homogeneity and normality assumption for the response variable distribution. Whereas in many applications, observations indicate to a heterogeneous structure containing some sub-populations with skew-symmetric structure either due to heterogeneity, multimodality or skewness of the population or a combination of them. In this situations, one can use a mixture of skew-symmetric distributions to model the population. In this paper we considered the Bayesian approach of regression analysis under the assumption of heterogeneity of population and a skew-symmetric distribution for sub-populations, by using a mixture of skew normal distributions. We used a simulation study and a real world example to assess the proposed Bayesian methodology and to compare it with frequentist approach.
Mohammad Kazemi, Davood Shahsavani, Mohammad Arashi, Volume 12, Issue 2 (3-2019)
Abstract
In this paper, we introduce a two-step procedure, in the context of high dimensional additive models, to identify nonzero linear and nonlinear components. We first develop a sure independence screening procedure based on the distance correlation between predictors and marginal distribution function of the response variable to reduce the dimensionality of the feature space to a moderate scale. Then a double penalization based procedure is applied to identify nonzero and linear components, simultaneously. We conduct extensive simulation experiments and a real data analysis to evaluate the numerical performance of the proposed method.
Atefe Pourkazemi, Hadi Alizadeh Noughabi, Sara Jomhoori, Volume 13, Issue 2 (2-2020)
Abstract
In this paper, the Bootstrap and Jackknife methods are stated and using these methods, entropy is estimated. Then the estimators based on Bootstrap and Jackknife are investigated in terms of bias and RMSE using simulation. The proposed estimators are compared with other entropy estimators by Monte Carlo simulation. Results show that the entropy estimators based on Bootstrap and Jackknife have a good performance as compared to the other estimators. Next, some tests of normality based on the proposed estimators are introduced and the power of these tests are compared with other tests.
Mohammad Reaz Kazemi, Volume 14, Issue 2 (2-2021)
Abstract
In this paper, we investigate the confidence interval for the parameter of the common correlation coefficient of several bivariate normal populations. To do this, we use the confidence distribution approach. By simulation studies and using the concepts of coverage probability and expected length, We compare this method with the generalized variable approach. Results of simulation studies show that the coverage probability of the proposed method is close to the nominal level in all situations and also, in most cases, the expected length of this method is less than that of the generalized variable approach. Finally, we present two real examples to apply this approach.
|
|