[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 1 results for Hassani

Mr Reza Zabihi Moghadam, Dr Masoud Yarmohammadi, Dr Hossein Hassani, Dr Parviz Nasiri,
Volume 16, Issue 2 (3-2023)
Abstract

The Singular Spectrum Analysis (SSA) method is a powerful non-parametric method in the field of time series analysis and has been considered due to its features such as no need to stationarity assumptions or a limit on the number of collected observations. The main purpose of the SSA method is to decompose time series into interpretable components such as trend, oscillating component, and unstructured noise. In recent years, continuous efforts have been made by researchers in various fields of research to improve this method, especially in the field of time series prediction. In this paper, a new method for improving the prediction of singular spectrum analysis using Kalman filter algorithm in structural models is introduced. Then, the performance of this method and some generalized methods of SSA are compared with the basic SSA   using the root mean square error criterion. For this comparison, simulated data from structural models and real data of gas consumption in the UK have been used. The results of this study show that the newly introduced method is more accurate than other methods.
 

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 33 queries by YEKTAWEB 4710