[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 4 results for Chachi

Jalal Chachi, Gholamreza Hesamian,
Volume 8, Issue 1 (9-2014)
Abstract

In this paper, we deal with modeling crisp input-fuzzy output data by constructing a MARS-fuzzy regression model with crisp parameters estimation and fuzzy error terms for the fuzzy data set. The proposed method is a two-phase procedure which applies the MARS technique at phase one and an optimization problem at phase two to estimate the center and fuzziness of the response variable. A realistic application of the proposed method is also presented in a hydrology engineering problem. Empirical results demonstrate that the proposed approach is more efficient and more realistic than some traditional least-squares fuzzy regression models.

Jalal Chachi, Mahdi Roozbeh,
Volume 10, Issue 1 (8-2016)
Abstract

Robust linear regression is one of the most popular problems in the robust statistics community. The parameters of this method are often estimated via least trimmed squares, which minimizes the sum of the k smallest squared residuals. So, the estimation method in contrast to the common least squares estimation method is very computationally expensive. The main idea of this paper is to propose a new estimation method in partial linear models based on minimizing the sum of the k smallest squared residuals which determines the set of outlier point and provides robust estimators. In this regard, first, difference based method in estimation parameters of partial linear models is introduced. Then the method of obtaining robust difference based estimators in partial linear models is introduced which is based on solving an optimization problem minimizing the sum of the k smallest squared residuals. This method can identify outliers. The simulated example and applied numerical example with real data found the proposed robust difference based estimators in the paper produce highly accurate results in compare to the common difference based estimators in partial linear models.


Jalal Chachi, Alireza Chaji,
Volume 15, Issue 1 (9-2021)
Abstract

This article introduces a new method to estimate the least absolutes linear regression model's parameters, which considers optimization problems based on the weighted aggregation operators of ordered least absolute deviations. In the optimization problem, weighted aggregation of orderd fitted least absolute deviations provides data analysis to identify the outliers while considering different fitting functions simultaneously in the modeling problem. Accordingly, this approach is not affected by outlier observations and in any problem proportional to the number of potential outliers selects the best model estimator with the optimal break-down point among a set of other candidate estimators. The performance and the goodness-of-fit of the proposed approach are investigated, analyzed and compared in modeling analytical dataset and a real value dataset in hydrology engineering at the presence of outliers. Based on the results of the sensitivity analysis, the properties of unbiasedness and efficiency of the estimators are obtained.

Jalal Chachi, Mohammadreza Akhond, Shokoufeh Ahmadi,
Volume 18, Issue 2 (2-2025)
Abstract

The Lee-Carter model is a useful dynamic stochastic model representing the evolution of central mortality rates over time. This model only considers the uncertainty about the coefficient related to the mortality trend over time but not the age-dependent coefficients. This paper proposes a fuzzy extension of the Lee-Carter model that allows quantifying the uncertainty of both kinds of parameters. The variability of the time-dependent index is modeled as a stochastic fuzzy time series. Likewise, the uncertainty of the age-dependent coefficients is quantified using triangular fuzzy numbers. Considering this last hypothesis requires developing and solving a fuzzy regression model. Once the generalization of the desired fuzzy model is introduced, we will show how to fit the logarithm of the central mortality rate in Khuzestan province using by using fuzzy numbers arithmetic during the years 1401-1383 and random fuzzy forecast in the years 1402-1406.

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 36 queries by YEKTAWEB 4710