|
|
|
 |
Search published articles |
 |
|
Showing 1 results for Behzadi
Alireza Beheshty, Hosein Baghishani, Mohammadhasan Behzadi, Gholamhosein Yari, Daniel Turek, Volume 19, Issue 1 (9-2025)
Abstract
Financial and economic indicators, such as housing prices, often show spatial correlation and heterogeneity. While spatial econometric models effectively address spatial dependency, they face challenges in capturing heterogeneity. Geographically weighted regression is naturally used to model this heterogeneity, but it can become too complex when data show homogeneity across subregions. In this paper, spatially homogeneous subareas are identified through spatial clustering, and Bayesian spatial econometric models are then fitted to each subregion. The integrated nested Laplace approximation method is applied to overcome the computational complexity of posterior inference and the difficulties of MCMC algorithms. The proposed methodology is assessed through a simulation study and applied to analyze housing prices in Mashhad City.
|
|
|
|
|
|
|