[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 6 results for Baghishani

Hossein Baghishani, Mohammad Mahdi Tabatabaei,
Volume 1, Issue 1 (9-2007)
Abstract

In parameter driven models, the main problem is likelihood approximation and also parameter estimation. One approach to this problem is to apply simpler likelihoods such as composite likelihood. In this paper, we first introduce the parameter driven models and composite likelihood and then define a new model selection criterion based on composite likelihood. Finally, we demonstrate composite likelihood's capabilities in inferences and accurate model selection in parameter driven models throughout a simulation study.
Ehsan Eshaghi, Hossein Baghishani, Davood Shahsavani,
Volume 7, Issue 1 (9-2013)
Abstract

In some semiparametric survival models with time dependent coefficients, a closed-form solution for coefficients estimates does not exist. Therefore, they have to be estimated by using approximate numerical methods. Due to the complicated forms of such estimators, it is too hard to extract their sampling distributions. In such cases, one usually uses the asymptotic theory to evaluate properties of the estimators. In this paper, first the model is introduced and a method is proposed, by using the Taylor expansion and kernel methods, to estimate the model. Then, the consistency and asymptotic normality of the estimators are established. The performance of the model and estimating procedure are evaluated by a heavy simulation study as well. Finally, the proposed model is applied on a real data set on heart disease patients in one of the Mashhad hospitals.

Sedighe Eshaghi, Hossein Baghishani, Negar Eghbal,
Volume 12, Issue 1 (9-2018)
Abstract

Introducing some efficient model selection criteria for mixed models is a substantial challenge; Its source is indeed fitting the model and computing the maximum likelihood estimates of the parameters. Data cloning is a new method to fit mixed models efficiently in a likelihood-based approach. This method has been popular recently and avoids the main problems of other likelihood-based methods in mixed models. A disadvantage of data cloning is its inability of computing the maximum of likelihood function of the model. This value is a key quantity in proposing and calculating information criteria. Therefore, it seems that we can not, directly, define an appropriate information criterion by data cloning approach. In this paper, this believe is broken and a criterion based on data cloning is introduced. The performance of the proposed model selection criterion is also evaluated by a simulation study.


Negar Eghbal, Hossein Baghishani,
Volume 14, Issue 2 (2-2021)
Abstract

Geostatistical spatial count data in finite populations can be seen in many applications, such as urban management and medicine. The traditional model for analyzing these data is the spatial logit-binomial model. In the most applied situations, these data have overdispersion alongside the spatial variability. The binomial model is not the appropriate candidate to account for the overdispersion. The proper alternative is a beta-binomial model that has sufficient flexibility to account for the extra variability due to the possible overdispersion of counts. In this paper, we describe a Bayesian spatial beta-binomial for geostatistical count data by using a combination of the integrated nested Laplace approximation and the stochastic partial differential equations methods. We apply the methodology for analyzing the number of people injured/killed in car crashes in Mashhad, Iran. We further evaluate the performance of the model using a simulation study.


Mahsa Nadifar, Hossein Baghishani, Afshin Fallah,
Volume 15, Issue 1 (9-2021)
Abstract

Many of spatial-temporal data, particularly in medicine and disease mapping, are counts. Typically, these types of count data have extra variability that distrusts the classical Poisson model's performance. Therefore, incorporating this variability into the modeling process, plays an essential role in improving the efficiency of spatial-temporal data analysis. For this purpose, in this paper, a new Bayesian spatial-temporal model, called gamma count, with enough flexibility in modeling dispersion is introduced. For implementing statistical inference in the proposed model, the integrated nested Laplace approximation method is applied. A simulation study was performed to evaluate the performance of the proposed model compared to the traditional models. In addition, the application of the model has been demonstrated in analyzing leukemia data in Khorasan Razavi province, Iran.

Alireza Beheshty, Hosein Baghishani, Mohammadhasan Behzadi, Gholamhosein Yari, Daniel Turek,
Volume 19, Issue 1 (9-2025)
Abstract

Financial and economic indicators, such as housing prices, often show spatial correlation and heterogeneity. While spatial econometric models effectively address spatial dependency, they face challenges in capturing heterogeneity. Geographically weighted regression is naturally used to model this heterogeneity, but it can become too complex when data show homogeneity across subregions. In this paper, spatially homogeneous subareas are identified through spatial clustering, and Bayesian spatial econometric models are then fitted to each subregion. The integrated nested Laplace approximation method is applied to overcome the computational complexity of posterior inference and the difficulties of MCMC algorithms. The proposed methodology is assessed through a simulation study and applied to analyze housing prices in Mashhad City.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.04 seconds with 38 queries by YEKTAWEB 4710