[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 3 results for Arast

Mehrdad Niaparast, Sahar Mehr-Mansour,
Volume 4, Issue 1 (9-2010)
Abstract

The main part of optimal designs in the mixed effects models concentrates on linear models and binary models. Recently, Poisson models with random effects have been considered by some researchers. In this paper, an especial case of the mixed effects Poisson model, namely Poisson regression with random intercept is considered. Experimental design variations are obtained in terms of the random effect variance and indicated that the variations depend on the variance parameter. Using D-efficiency criterion, the impression of random effect on the experimental setting points is studied. These points are compared with the optimal experimental setting points in the corresponding model without random effect. We indicate that the D-efficiency depends on the variance of random effect.
Sahar Mehrmansour, Mehrdad Niaparast,
Volume 8, Issue 2 (3-2015)
Abstract

The main researches of optimum experimental designs for mixed effects have been concentrated on locally optimal designs. These designs are obtained based on the initial guess of parameters. Therefore, locally designs may be the best design but for wrong assumed model. Recently, Bayesian approach has been considered by researches when information about model parameters is available. In the present work, optimal design for the mixed effects Poisson regression model based on some prior distributions are considered and for two special cases of this models the Bayesian D-optimal designs are obtained for some representative values of variance of random effect. The results are compared to Poisson regression model without random effects.

Mohammmad Arast, Mohammmad Arashi, Mohammmad Reza Rabie,
Volume 13, Issue 1 (9-2019)
Abstract

Often‎, ‎in high dimensional problems‎, ‎where the number of variables is large the number of observations‎, ‎penalized estimators based on shrinkage methods have better efficiency than the OLS estimator from the prediction error viewpoint‎. In these estimators‎, ‎the tuning or shrinkage parameter plays a deterministic role in variable selection‎. ‎The bridge estimator is an estimator which simplifies to ridge or LASSO estimators varying the tuning parameter‎. ‎In these paper‎, ‎the shrinkage bridge estimator is derived under a linear constraint on regression coefficients and its consistency is proved‎. ‎Furthermore‎, ‎its efficiency is evaluated in a simulation study and a real example‎.



Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.1 seconds with 33 queries by YEKTAWEB 4704