|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Aghamohammadi
Ali Aghamohammadi, Sakineh Mohammadi, Volume 9, Issue 2 (2-2016)
Abstract
In many medical studies, in order to describe the course of illness and treatment effects, longitudinal studies are used. In longitudinal studies, responses are measured frequently over time, but sometimes these responses are discrete and with two-state. Recently Binary quantile regression methods to analyze this kind of data have been taken into consideration. In this paper, quantile regression model with Lasso and adaptive Lasso penalty for longitudinal data with dichotomous responses is provided. Since in both methods posteriori distributions of the parameters are not in explicit form, thus the full conditional posteriori distributions of parameters are calculated and the Gibbs sampling algorithm is used to deduction. To compare the performance of the proposed methods with the conventional methods, a simulation study was conducted and at the end, applications to a real data set are illustrated.
Ali Aghamohammadi, Mahdi Sojoudi, Volume 10, Issue 2 (2-2017)
Abstract
Value-at-Risk and Average Value-at-Risk are tow important risk measures based on statistical methoeds that used to measure the market's risk with quantity structure. Recently, linear regression models such as least squares and quantile methods are introduced to estimate these risk measures. In this paper, these two risk measures are estimated by using omposite quantile regression. To evaluate the performance of the proposed model with the other models, a simulation study was conducted and at the end, applications to real data set from Iran's stock market are illustarted.
|
|
|
|
|
|
|