[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 1 results for Abdollahzadeh

Abdolreza Sayyareh, Saeide Abdollahzadeh,
Volume 18, Issue 2 (2-2025)
Abstract

Non-invasive NIPT test has been used in trisomy 21 screening. However, there is a possibility of misdiagnosis in the methods used to diagnose Down syndrome. Therefore, it is essential to provide a process that can be used alongside these methods to improve efficiency. The main goal of this article is to design a model based on machine learning algorithms for the early diagnosis of Down syndrome. Machine learning algorithms such as support vector machine, simple Bayes, decision tree, random forest, and nearest neighbor, which are frequently used to improve the diagnosis of disorders, have been implemented on the mentioned dataset. The performance of each model on the Down syndrome dataset was investigated, and the most suitable model for this purpose was introduced.

Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.05 seconds with 33 queries by YEKTAWEB 4710