1. موسوی، ن. و گلعلیزاده، م. (1402)، رویکردی نوین در بکارگیری روش دسته ماشین بردار پشتیبان تصادفی در تحلیل داده های بیان ژن سرطان پروستات، مجله علوم آماری ایران، 17، 476-459. 2. Abu¬ Mostafa, Y. S., Magdon¬Ismail, M. and Lin, H.T. (2012), Learning from Data, 4, New York: AMLBook. 3. Ashoor, G., Syngelaki, A., Wagner, M., Birdir, C. and Nicolaides, K. H. (2012), Chromosome-Selective Sequencing of Maternal Plasma Cell-Free DNA for First Trimester Detection of Trisomy 21 and Trisomy 18, American Journal of Obstetrics and Gynecology, 206, 322¬-e1. [ DOI:10.1016/j.ajog.2012.01.029] [ PMID] 4. Breiman, L. (2001), Random forests, Machine Learning, 45, 5¬-32. [ DOI:10.1023/A:1010933404324] 5. Chiu, R. W., Chan, K. A., Gao, Y., Lau, V. Y., Zheng, W., Leung, T. Y. and Lo, Y. D. (2008). Noninvasive Prenatal Diagnosis of Fetal Chromosomal Aneuploidy by Massively Parallel Genomic Sequencing of DNA in Maternal Plasma, Proceedings of the National Academy of Sciences, 105, 20458¬-20463. [ DOI:10.1073/pnas.0810641105] [ PMID] [ ] 6. Daumé, H. (2017), A Course in Machine Learning, 100-¬103. 7. Hand, D. J. (2007), Principles of Data Mining, Drug Safety, 30, 621¬-622. [ DOI:10.2165/00002018-200730070-00010] [ PMID] 8. He, F., Lin, B., Mou, K., Jin, L., and Liu, J. (2021), A Machine Learning Model for the Prediction of Down Syndrome in Second Trimester Antenatal Screening, Clinica Chimica Acta, 521, 206¬-211. [ DOI:10.1016/j.cca.2021.07.015] [ PMID] 9. Kramer, O. (2013), Dimensionality Reduction with Unsupervised Nearest Neighbors, Berlin, 13¬--23. [ DOI:10.1007/978-3-642-38652-7_2] 10. Lau, T. K., Chen, F., Pan, X., Pooh, R. K., Jiang, F., Li, Y., Jiang, H., Li, X., Chen, S.H., Zhang, X. (2012), Noninvasive Prenatal Diagnosis of Common Fetal Chromosomal Aneuploidies by Maternal Plasma DNA Sequencing, The Journal of Maternal¬Fetal & Neonatal Medicine, 25, 1370-1374. [ DOI:10.3109/14767058.2011.635730] [ PMID] 11. Liao, C., Yin, A. H., Peng, C. F., Fu, F., Yang, J, x., Li, R., and Zhang, K. (2014), Noninvasive Prenatal Diagnosis of Common Aneuploidies by Semiconductor Sequencing, Proceedings of the National Academy of Sciences, 111, 7415-¬7420. [ DOI:10.1073/pnas.1321997111] [ PMID] [ ] 12. Lim, B. H., Adams, L. A. and Lilly, M. M. (2012), Self¬worth as a Mediator Between Attachment and Posttraumatic Stress in Interpersonal Trauma, Interpersonal Violence, 27, 2039¬-2061. [ DOI:10.1177/0886260511431440] [ PMID] 13. Morris, J. K. and Alberman, E. (2009), Trends in Down's Syndrome Live Births and Antenatal Diagnoses in England and Wales from 1989 to 2008: Analysis of Data from the National Down Syndrome Cytogenetic Register, Bmj, 339. [ DOI:10.1136/bmj.b3794] [ PMID] [ ] 14. Moussavi, N. and Golalizadeh, M . (2023), A New Approaⅽh in Using Ranⅾoⅿ Support Veⅽtor Ⅿaⅽhine Ⅽⅼuster in Anaⅼyzing Prostate Ⅽanⅽer Gene Expression Ⅾata, Journal of Statistical Sciences, 17, Journal of Statistical Sciences, 17, 459-476 15. Ramanathan, S., Sangeetha, M., Talwai, S. and Natarajan, S. (2018), Probabilistic Determination of Down's Syndrome Using Machine Learning Techniques, IEEE, 126¬-132. [ DOI:10.1109/ICACCI.2018.8554392] [ PMID] [ ] 16. Shalev¬Shwartz, S. and Ben¬David, S. (2014), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press. [ DOI:10.1017/CBO9781107298019] 17. Suthaharan, S. (2016), Decision Tree Learning. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, 237¬-269. [ DOI:10.1007/978-1-4899-7641-3_10] 18. Vapnik, V. (1995), Support Vector Networks, Machine Learning, 20, 273¬-297. [ DOI:10.1007/BF00994018] 19. Yang, J., Ding, X. and Zhu, W. (2018), Improving the Calling of Non¬invasive Prenatal Testing on 13-18¬-21¬ trisomy by Support Vector Machine Discrimination, PLoS One, 13, e0207840. [ DOI:10.1371/journal.pone.0207840] [ PMID] [ ] 20. Zhang, H. G., Jiang, Y. T., Dai, S. D., Li, L., Hu, X. N. and Liu, R. Z. (2021), Application of Intelligent Algorithms in Down Syndrome Screening During Second Trimester Pregnancy, World Journal of Clinical Cases, 9, 4573. [ DOI:10.12998/wjcc.v9.i18.4573] [ PMID] [ ]
|