1. شفاعی نوقابی م.، خراشاديزاده م. (1404) ويژگی هايی از تعمیم جديد توزيع لگ لوژستیک بهمراه كاربرد آن، مجله علوم آماری، 19(1) ، 117-136. 2. Afify, A. Z. Gemeay, A M. and Ibrahim, N. A. (2020). The Heavy-Tailed Exponential Distribution: Risk Measures,Estimation, and Application to Actuarial Data, Mathematics, 8, 1276. [ DOI:10.3390/math8081276] 3. M. Teamah, A. M. Elbanna, A. E. and Gemeay, A. M. (2021). Heavy-Tailed Log-Logistic Distribution: Properties, Risk Measures and Applications, Statistics, Optimization and Information Computing, 9, 910-941. [ DOI:10.19139/soic-2310-5070-1220] 4. Al-Babtain, A. A. Elbatal, I. Al-Mofleh, H. Gemeay, A. M. Afify, A. Z. and Sarg, A. M. (2021), The Flexible Burr xg Family: Properties, Inference, and Applications in Engineering Science. Symmetry, 13(3), 474. [ DOI:10.3390/sym13030474] 5. Abd El-Bar, A. M. T.,Lima, M. d. C. S., and Ahsanullah, M. (2020), Some Inferences Based on a Mixture of Power Function and Continuous Logarithmic Distribution, Journal of Taibah University for Science, 14 (1),1116-1126. [ DOI:10.1080/16583655.2020.1804140] 6. Algarni, A. (2022), Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model, Axioms, 11(9), 438. [ DOI:10.3390/axioms11090438] 7. Al-Mofleh, H. Afify, A. Z. and Ibrahim. N. A. (2020) A New Extended Two-Parameter Distribution: Properties, Estimation Methods, and Applications in Medicine and Geology. Mathematics, 8(9), 1578. [ DOI:10.3390/math8091578] 8. Alsadat, N., Hassan, A.S., Elgarhy, M., Johannssen, A. and Gemeay, A.M. (2024), Estimation Methods Based on Ranked Set Sampling for Power Logarithmic Distribution, Scientific Reports, 14, 17652. [ DOI:10.1038/s41598-024-67693-4] [ PMID] [ ] 9. El-Saeed, A.R., Hassan, A.S., Elharoun, N.M., Al Mutairi, A., Khasha, R.H. and Nassr, S.G. (2023), A class of Power Inverted Topp-Leone Distribution: Properties, Different Estimation Methods and Applications, Journal of Radiation Research and Applied Sciences, 16, 100643. [ DOI:10.1016/j.jrras.2023.100643] 10. Bernardi, M., Maruotti, A. and Petrella, L. (2012), Skew Mixture Models for Loss Distributions, A Bayesian Approach, Insur, Math. Econ., 51(3), 617-623. [ DOI:10.1016/j.insmatheco.2012.08.002] 11. Cooray, K. and Ananda, M. M. A. (2005), Modeling Actuarial Data With a Composite Lognormal-Pareto Model, Scand Actuar J, 5, 321-334. [ DOI:10.1080/03461230510009763] 12. Fayomi, A., Tahir, M. H., Algarni, A., Imran, M. and Jamal, F. (2022). A New Useful Exponential Model with Applications to Quality Control and Actuarial Data. Comput. Intell. Neurosci., 2489998. [ DOI:10.1155/2022/2489998] [ PMID] [ ] 13. Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., and Zwillinger, D. (2007). Table of Integrals, Series, and Products (7th ed.). Academic Press. 14. Ibragimov, R. and Prokhorov, A. (2017), Heavy Tails and Copulas:Topics in Dependence Modelling in Economics and Finance, World Scientific. 15. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models:From Data to Decisions, John Wiley & Sons. [ DOI:10.1002/9781118787106] 16. Lane, M. N. (2000), Pricing Risk Transfer Transactions, ASTIN Bulletin, 30(2), 259-293. [ DOI:10.2143/AST.30.2.504635] 17. Rooks, B., Schumacher, A., and Cooray, K. (2020), The power Cauchy Distribution: Derivation, description, and Composite Models, NSF-REU Program Reports, 2010. 18. Rosaiah, K., Kantam, R. R. L., and Kumar, S. (2006). Reliability Test Plans for Exponentiated Log-Logistic Distribution, Economic Quality Control, 21(2), 279-289. [ DOI:10.1515/EQC.2006.279] 19. Shafaei Noughabi, M., Khorashadizade, M. (2025). On Properties of a New Generalization of the Log-Logistic Distribution and Its Application. JSS, 19 (1) ,117-136. [ DOI:10.61186/jss.19.1.6] 20. Sapkota, L. P., and Kumar, V. (2023), Applications and Some Characteristics of Inverse Power Cauchy Distribution, Reliability Theory and Applications, 18(1), 301-315.
|