1. فتوحی حمیدرضا و گلعلیزاده موسی (1391)، بهبود عملکرد تحلیل ژئودزیک اصلی در تحلیل آمار شکل، مجله علوم آماری، ۶(۲)، ۲۱۹-۲۳۶. 2. مقیم بیگی میثم (1401)، رگرسیون لوژستیک چندجملهای نیمه پارامتری برای ردهبندی دادههای شکل، مجله علوم آماری، ۱۶(۲)، ۴۴۹-۴۶۸. 3. مقیم بیگی میثم و گلعلیزاده موسی (1398)، مدلبندی رگرسیونی شکل از طریق مثلثی کردن، مجله علوم آماری، ۱۳(۱)، ۱۸۵-۱۹۶. 4. Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. In B. N. Petrov & F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information Theory. 5. Bookstein, F. L. (1986). Size and Shape Spaces for Landmark Data in Two Dimensions (with Discussion). Statistical Science, 1(2), 181-242.
https://doi.org/10.1214/ss/1177013696 [ DOI:10.1214/ss/1177013702] 6. Chaki, J., & Dey, N. (2020). Image Color Feature Extraction Techniques: Fundamentals and Applications. Springer Nature. [ DOI:10.1007/978-981-15-5761-3] 7. Cox, D. R., & Snell, E. J. (1989). Analysis of Binary Data. Chapman and Hall/CRC. 8. Debavelaere, V., Durrleman, S., & Allassonnière, S. (2020). Learning the Clustering of Longitudinal Shape Data Sets into a Mixture of Independent or Branching Trajectories. International Journal of Computer Vision, 128(12), 2794-2809. [ DOI:10.1007/s11263-020-01337-8] 9. Fotouhi, H. & Golalizadeh, M. (2013). Improving Performance of the Principal Geodesic Analysis in Statistical Shape Analysis, JSS, 6(2), 219-236. 10. Kendall, D. G. (1977). The Diffusions of Shape. Advances in Applied Probability, 9(3), 428-430. [ DOI:10.2307/1426091] 11. Moghimbeygi, M. (2023). Semiparametric Multinomial Logistic Regression Model to Classify Shape Data. JSS , 16(2), 11 [ DOI:10.52547/jss.16.2.449] 12. Moghimbeygi, M. and Golalizadeh, M. (2019). Regression Modelling of Shape Through Triangulation, JSS, 13(1), 185-196. [ DOI:10.29252/jss.13.1.185] 13. Moghimbeygi, M., & Nodehi, A. (2022). Multinomial Principal Component Logistic Regression on Shape Data. Journal of Classification, 39(3), 1-22. [ DOI:10.1007/s00357-022-09423-x] 14. Rosin, P. L. (2005). Computing Global Shape Measures. In Handbook of Pattern Recognition and Computer Vision (pp. 177-196). [ DOI:10.1142/9789812775320_0010] 15. Rostami, R., Bashiri, F. S., Rostami, B., & Yu, Z. (2019). A Survey on Data Driven 3D Shape Descriptors. In Computer graphics forum (Vol. 38, No. 1, pp. 356-393). [ DOI:10.1111/cgf.13536] 16. Russakoff, D. B., Tomasi, C., Rohlfing, T., & Maurer, C. R. (2004). Image Similarity Using Mutual Information of Regions. In Computer Vision - ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part III (Vol. 3022, pp. 596-607). Springer. [ DOI:10.1007/978-3-540-24672-5_47] 17. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464. [ DOI:10.1214/aos/1176344136] 18. Simó, A., Ibáñez, M. V., Epifanio, I., & Gimeno, V. (2020). Generalized Partially Linear Models on Riemannian Manifolds. Journal of the Royal Statistical Society: Series C (Applied Statistics), 69(3), 641-661. [ DOI:10.1111/rssc.12411] 19. Srivastava, A., Joshi, S. H., Mio, W., & Liu, X. (2005). Statistical Shape Analysis: Clustering, Learning, and Testing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 590-602. [ DOI:10.1109/TPAMI.2005.86] [ PMID] 20. Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). Springer. [ DOI:10.1007/978-0-387-21706-2]
|